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Executive summary
In this deliverable, we primarily present the results of Task 3.4 “Adaptation and learning of
control parameters” and Task 3.6 “Learning of disassembly movement primitives by exploiting
physical task constraints”.

We review our contributions to the field of skill adaptation and learning in the context of
robot-aided recycling of electronic waste, list our scientific publications and summarize how
these contributions address the challenges of disassembling electronic devices.
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1 Introduction
Conventional methods, such as the “crush-and-separate” technique for the recycling of electronic
waste, exhibit limitations, particularly when the treated devices contain hazardous components
such as batteries. Due to the fire hazard posed by batteries, they must be removed before
further recycling steps can be initiated. However, removing batteries can only be accomplished
if the electronic devices in question can be disassembled. The automation of this disassembly
process for a wide range of electronic devices poses a significant challenge due to the diversity of
electronic device and their varying physical condition when they are discarded. Consequently,
devising a comprehensive automated solution for the battery removal has proven to be an
exceptionally challenging task. As a result, current automation efforts have been directed
toward specific device models to mitigate the complexity of this challenge. However, even
within more focused applications, the array of different device models of a certain type remains
substantial. Hence, there is need for efficient and adaptable solutions to improve the automation
of the disassembly process.

Within the scope of the ReconCycle project, this issue is addressed through a tripartite
process. Initially, we design an archetypical disassembly solution for one given exemplar of a
device and specify the necessary steps/actions (such as levering, cutting, unscrewing, etc.) by
employing modular and reconfigurable hardware and software architecture (see Objective 1
in the Descrription of Action (DoA)). In parallel, the sensory information is aligned with the
execution steps to create a semantic representation with variables that capture the action-
relevant information (see Objective 2 in DOA). This is necessary for the robot to autonomously
determine which actions must be taken to disassemble. Lastly and of main interest in this
document, the robot actions are subject to adaptation and need to be learned for each specific
device model and the desired disassembly sequence (see Objective 3 in DoA).

In previous reports, we outlined how the modularity and reconfigurability of the developed
workcell enable us to alter the layout of the workcell quickly and efficiently (see deliverables
D1.1 and D1.2) Combined with re-configurable, flexible, and adaptable soft end-effectors
(see deliverables D4.1, D4.2 and D4.3), this helps to accommodate the handling of different
device types in the same work cell. The reconfigurable hardware is accompanied by a modular
and hierarchical software architecture, which can be roughly split into three levels: task-level
programming (sequence of robotic skills), programming and acquisition of the robotic skills (e.g.,
levering, unscrewing, pushing, pulling), and the low-level control including skill adaptation. To
achieve the necessary level of flexibility to accommodate the variability of devices within the
same device family, we additionally rely on vision-based scene analysis and action prediction
(see deliverables D2.1 and D2.2), as well as skill learning adaptation of the control parameters
(described in this report).

These capabilities have already been demonstrated in the use-case-related reports; in de-
liverable D5.2, we outlined an archetypical solution for the disassembly of a specific heat cost
allocator (HCA) device that served as a basis for a more generalized pipeline for the disassem-
bly of different models of HCAs, presented in D5.4. The proposed pipeline relies on workcell
reconfiguration, action prediction, and skill adaptation. In deliverable D5.5, we demonstrated
this process for another device type – smoke detectors.

In this report, we summarize our findings related to the aspects of skill adaptation and
learning of robot control policies, providing an overview of the methodologies employed to
address the challenges of disassembly of electronic devices. The report is organized as follows.
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Section 2 discusses the methodologies for adapting and learning the control parameters for
disassembly tasks. Section 3 focuses on how physical task constraints are utilized to learn
disassembly movement primitives. Due to the computational intensity of certain learning and
optimization algorithms, a discussion on cloud-based computational offloading is included in
Section 4. Finally, in Section 5, we provide examples of how specific adaptive disassembly
techniques are used to overcome use-case-specific challenges.

2 Adaptation and learning of control parameters
To disassemble various device models with a generic (high-level) disassembly protocol, an au-
tomatic adaptation of the control parameters of different (low-level) actions is required to suc-
cessfully disassemble each specific device model. Each model comes with its own set of physical
constraints and handling requirements, necessitating a system capable of integrating higher-
level abstract knowledge, specific descriptions of task restrictions, and performance evaluation
metrics.

Human experts in manufacturing have comprehensive insights into the task requirements [7].
This knowledge is object-specific and commonly comprises task constraints, such as the motion
patterns, and the forces exerted on a specific object’s parts during manipulation. Two key
elements are indispensable for effective transition from these requirements to their practical
implementation: (1) a sophisticated adaptive control framework and (2) a task description
formalism that enables programmatic translation of specific forces and motion profiles.

Our approach begins with predefined skills (such as levering or unscrewing) from the skill
library. Whereas the skills are usually defined in the robot’s tool frame, the task requirements
are usually defined in the object’s coordinate frame (e.g., apply force in x-direction to push the
object). The control framework should, therefore, be able to determine a robot configuration
to meet these requirements. Specific forces and torque profiles can also be met by modifying
parameters such as the controller’s stiffness and additional force. To this end, we propose a
passivity-based skill motion learning scheme that utilizes a stiffness-adaptive uni-
fied force-impedance control framework [5]. This framework extends adaptive impedance
control with meta-parameter learning and compatible skill specifications.

Successfully integrating adaptive robot manipulation skills represents a highly complex prob-
lem that consists of desired force and form closures between the robotic end-effector and the
objects to be manipulated. To address this complexity, we derive a novel representation of
tactile skills to use within the unified force-impedance control framework, known as the task
phase plot [4]. This formalism describes the entire cycle of a manipulation skill based on force
and velocity information. Using unified force-impedance control, we develop a tactile manipula-
tion strategy for robust contact initiation and flexible manipulation, even when environmental
information is inaccurate. The manipulation approach dynamically employs impedance shap-
ing to react to unforeseen contacts and force-shaping to initiate and shape desired contact
conditions. The efficacy of this approach was empirically demonstrated in a peg-in-hole fitting
experiment. The experiment yielded task phase plots that were evaluated against state-of-
the-art impedance and force controllers regarding position accuracy, motion profile error, force
tolerance, force profile error, and compliance.

The framework was presented at IROS 2022 [5]. The post-print version of the manuscript is
provided in the Appendix. The representation of tactile skills will be presented at the upcoming
CDC 2023 [4].
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3 Learning of disassembly skills by exploiting physical task con-
straints

In practical applications, the pre-existing skill library may not contain all skills necessary for
addressing specific use cases. In such cases, the robot should ideally be capable of learning
new plans and skills autonomously. Given the inherent complexity of disassembling electronic
devices, an advanced approach to autonomous skill acquisition is essential.

Disassembly tasks are intrinsically constrained by physical factors such as the device compo-
nents’ shape, size, and interconnections. Contact tasks are generally considered hard to learn,
as the robot must learn a policy composed of poses and wrenches while interacting with an
unknown and possibly changing environment. On the other hand, interacting with the envi-
ronment can be advantageous to accelerate the learning process. Namely, learning physically
constrained tasks is easier than learning tasks where a robot can move completely freely in
space. The reason is that the environment constrains the admissible movement directions.
Consequently, the number of parameters that need to be learned can be greatly reduced. To
implement this type of learning, we need to use the natural robot motion along with the environ-
mental constraints. Compliant robot control provides a suitable framework for implementing
such a strategy.

Building upon these insights, we propose a novel approach to learning contact-rich
tasks based on a hierarchical learning scheme [9]. One of the main advantages of our
approach is its high learning speed, which exceeds the performance of reinforcement and deep
reinforcement learning methods that do not exploit the constraints of contact tasks. A high
learning speed is achieved by a meaningful decomposition of the task into decision processes
at different abstraction levels and by exploiting environmental constraints while controlling the
robot.

In addition, the framework proposes a powerful graph-based skill representation (example
in Fig. 1), which can be used to represent the disassembly plan/sequence of disassembly prim-
itives. The upper-level graph is essentially a precedence graph representing possible sequences
of disassembly operations, whereas the lower-level graph represents the disassembly actions for
the individual parts that need to be taken apart.

learned autonomously

human
demonstration
Two-stage disassembly graph

Figure 1: Robotic disassembly of a car number plate light. The robot first learns to remove the
plastic cover and then continues by learning how to remove the bulb. A human demonstrates
only where to grasp each part to start/proceed with the disassembly. The disassembly graph
is shown on the right.
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The learning task is to find optimal transitions from the start state to the goal state. Hi-
erarchical reinforcement learning can be applied for this purpose. The upper RL level learns
possible state sequences, while the lower level provides optimal sequences of movement prim-
itives for the transition between the states. Both optimal transitions and optimal movement
primitives can be learned simultaneously.

The framework has been experimentally verified on various tasks, including the disassembly
of a car number plate light (shown in Fig. 1). A description and a video demonstration of this
experiment are included in D5.4. The framework has been formally described and thoroughly
evaluated in a paper published in Robotics and Computer-Integrated Manufacturing journal
[9]. The paper is attached to this report in the Appendix.

Note that the disassembly graph can also be used to transfer an obtained skill to perform the
reverse operation (assembly) or perform further disassembles. To facilitate this, we developed
an incremental and pose invariant task representation that can be applied for more
robust execution of contact tasks presented at Ubiquitous Robotics 2023 [8]. The paper
is included in the Appendix.

In addition to our framework for learning contact policies, we consider a complementary
approach focusing on tactile skill adjustment in partially or fully unknown environments. This
extension is rooted in the principles of tactile skill libraries, wherein a robot expert trains the
robot with certain tactile action policies, including the motion and force profiles. Yet, when
carrying out the desired task, the robot should be able to adapt those intended tactile action
policies to an entirely or partially unknown environment based on estimations of environmental
constraints. Even if the robot has an external sensing capability, such as a camera, it may
still operate within tolerance, particularly under a fairly cluttered environment. Hence, the
tactile skills should be developed to allow the robot to adjust the appropriate tactile skills to
the surroundings with as little interference from outside as possible. Because the robot runs a
tactile skill defined for certain conditions, changes in the geometry could be inferred from the
local curvature [2]. Here, we use an exploration strategy to investigate the physical constraints
of the environment, such as corners and edges, via local curvature observer. The exploration
strategy utilizes the impedance controller’s adaptive stiffness and robust contact via the force
controller. Additionally, the recorded geometry information of the physical constraint might
further be used to generate motion and force profiles for a new surface.

The detailed methodology, including the exploration strategy and the adaptive nature of
the tactile skills, is comprehensively described in [2], which was presented at IFAC 2023. The
paper is included in the Appendix.

4 Relocation of computationally intensive learning algorithms to
the cloud

As robots become more and more intelligent, the complexity of the algorithms behind them is
increasing. Specifically, most of the advanced (deep) learning algorithms based on vision require
high computation power from the onboard robot controller. This increases the weight of the
robot and energy consumption. A promising solution to tackle this issue is to relocate the
expensive computation to the cloud. This part of the research investigates the possibility of
relocating a state-of-the-art nonlinear control. This way, we can think about the recycling robot
cell as a hardware station, with a centralized computation unit running all the software and
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algorithms on the cloud centre. This is a promising solution for resolving intellectual properties
and life-long learning algorithms that can be updated using data from all the stations. The
results of this study have been presented at ICRA 2023 [1].

5 Examples of adaptive operations in disassembly of electronic de-
vices

5.1 Unscrewing in disassembly of smoke detectors
As outlined in Section 2, any tactile process, such as levering or unscrewing, can be defined with
specific boundary conditions in motion and force. Constraints restrict motion from a purely
geometric standpoint, and the reaction force is zero along the free axis. In other words, during
task execution, the tool should move along the free axis with a given velocity, while the contact
forces occur along the other axes.

Ideally, the task phase plot demonstrates the entire power cycle that the object goes through,
in which the force-velocity relation evolves such that the contact is established gradually. Con-
tinuity in the force-velocity task phase plot corresponds to the absence of abrupt power changes
during the process, leading to success in the task. Therefore, we further developed the unified
force-impedance control paradigm to command the object motion and force imposed by the
task constraints [3]. We also developed the control shaping functions to maintain continuity in
the task phase plot by stiffness variation and force adaptation. The undesired contacts cause
deviations from the desired pose, creating either a pose error or external forces at the end-
effector. This phenomenon can be exploited to react robustly to the undesired contacts and to
re-configure the end-effector [5] by adapting the stiffness matrix.

The robot reacts to the environment if its behavior is compliant. Once the contact has been
established, the robot recovers its maximum stiffness and resumes the desired motion from its
present configuration. Additionally, we designed the force shaping function, which adapts the
desired force needed to execute the task to account for errors in tool alignment and unintended
contacts.

This approach can be employed for unscrewing tasks. While performing unscrewing using
a readily available screwdriver (see Fig. 2), the controller automatically ensures continuous

(a) Contact established (b) Maintaining contact

Figure 2: While performing the unscrewing using an off-the-shelf tool, the controller automat-
ically maintains the contact.

Page 8 of 77



contact with the target object. It allows the robot to handle potential tool alignment errors
during the process. Furthermore, in situations where a significant alignment error occurs,
leading to the loss of surface contact, the controller smoothly reduces the commanded force to
zero. This transition enables the robot to seamlessly switch to an impedance-controlled mode,
ensuring that it can continue following the desired motion without applying any force. This
way we facilitate a safe and precise execution of the task.

5.2 Levering of PCBs from heat cost allocators
A common step in disassembly of electronic devices is levering, which allows the robot to apply
greater forces when removing parts of the devices. In practical applications, the robot should
be able to adapt a levering action to different device types without an operator specifically
recording a trajectory for each device. A method to generalize the existing levering actions
to new devices is thus needed. In [6], we presented a parameterized algorithm for performing
robotic levering using feedback-based control to determine contact points and a sinusoidal
pattern to realize adaptive levering motion.

Fig. 3 (a) shows a typical levering setup. The part to be levered (PCB) lies within the
object (HCA casing). To increase mechanical advantage, the lever (fixed finger of the gripper)
is positioned against the fulcrum (walls of the casing). We have observed that humans often
use periodic movements when levering, especially when they do not know the force required to
dislodge an object with the lever. In doing so, they slightly increase the force on the lever in each
period. To mimic this behavior, we generate a single degree-of-freedom sinusoidal movement.
In each repetition of the movement, we increase the amplitude. As the robot tries to move the
lever even further, greater force is exerted on the PCB. The force is indirectly monitored based
on the force-torque estimation performed internally by the robot control system using internal
joint torque sensors. The levering is considered successful when a sudden drop is detected
shortly after a peak in the estimated force, meaning that the locking mechanism has been
broken and the PCB is levered out. We utilized the stiffness-adaptive unified force-impedance
control framework described in Section 2 to control the robot during task execution.

The algorithm can deal with devices of different shapes, as shown in Fig. 3 (b) and (c).
After the initial adaptation process, the subsequent executions of the learned levering action
can be directly executed and accelerated to improve the performance.

Deliverable D5.4 contains video demonstrations of the procedure for different HCAs. A
paper presented at RAAD 2023 contains a more detailed description of the algorithm and
performance evaluation [6].

PCB
to be levered

edge of the plastic housing
(serving as fulcrum)

contact point

robot
flange

lever

x

z

(a) Elements of the levering pro-
cess.

(b) Start of the levering process.
Long HCA type.

(c) PCB is partially levered out.
Short HCA type.

Figure 3: Adaptive levering
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Figure 4: Different types of battery mounting in the considered electronic devices.

5.3 Removing batteries from PCBs by a rocking motion
• cutting the contact wires,

• milling the contacts away,

• cutting the PCB into part with the battery and part without the battery, and

• loosening the contacts by a repetitive rocking motion.

Certain methods for battery removal from PCBs necessitate using specialized tools (such as
a pneumatic cutter or CNC mill) or require dexterous manipulation (i.e., for holding the wires
in place while cutting them). In addition, some approaches require precise sensing technology.
Therefore, the procedure often needs to be manually adjusted for a new device and is less
suitable for general-purpose disassembly pipelines. In contrast, human-inspired strategies like
loosening the contacts by repetitive rocking motion offer greater adaptability.

In Fig. 5, we show how the battery can be detached from the rest of the smoke detector’s
internals using the variable stiffness gripper (described in deliverable D4.2) with a levering tool
by applying a rocking motion pattern.

We followed the task formalism described in Section 2, where the task is specified relative
to the manipulated object. The battery needs to be pushed back and forth with gradually
increasing force impulses (following the same underlying idea as with human-inspired levering
described in the previous section). Likewise, the forces are monitored, and the motion is stopped
when the object is freely moving (no opposing force).

5.4 Opening a lid by levering
The levering operation is one of the main steps in the disassembly pipeline. For instance, when
removing the PCB from a heat-cost-allocator (HCA), levering lets us apply moments using the
levering support at the edge of the HCA, as shown in Fig. 6. One approach to levering is to use
periodic motions while maintaining contact perpendicular to the tooltip, essentially when the
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(a) Initial grasp (b) Applying impulse (c) Detached battery

Figure 5: Battery removal by rocking motion.

desired force is complicated to define to lever an object [6]. Levering is likely successful when
the locking mechanism is broken or fully opened. In other words, it is difficult to define a goal
for a successful execution.

We designed an experimental setup to enable reproducible comparisons by choosing a car
outlet socket as our exemplary object and manufacturing an aluminium counterpart to fix it
firmly [3]. The lid of a car socket outlet is levered by using the peg. The experiment starts with
no contact, and the algorithm is defined such that the robot should start with force control to
establish contact. The expected behaviour is that if no contact is sensed, the robot should stop
force control and restart when contact is sensed.

(a) Closed lid (b) Opened lid

Figure 6: The levering operation can also be used to open lids. Some HCAs come with a plastic
sleeve using the same locking mechanism.
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Passivity-Based Skill Motion Learning in Stiffness-Adaptive Unified
Force-Impedance Control

Kübra Karacan, Hamid Sadeghian, Robin Kirschner and Sami Haddadin∗

Abstract— Tactile robots shall be deployed for dynamic task
execution in production lines with small batch sizes. Therefore,
these robots should have the ability to respond to changing
conditions and be easy to (re-)program. Operating under
uncertain environments requires unifying subsystems such as
robot motion and force policy into one framework, referred to
as tactile skills. In this paper, we propose the enhancement
of these skills for passivity-based skill motion learning in
stiffness-adaptive unified force-impedance control. To achieve
the increased level of adaptability, we represent all tactile
skills by three basic primitives: contact initiation, manipulation,
and contact termination. To ensure passivity and stability, we
develop an energy-based approach for unified force-impedance
control that allows humans to teach the robot motion through
physical interaction during the execution of a tactile task. We
incorporate our proposed framework into a tactile robot to
experimentally validate the motion adaptation by interaction
performance and stability of the control. While the polishing
task is presented as our use case through the paper, the
experiments can also be carried out with various tactile skills.
Finally, the results show the novel controller’s stability and
passivity to contact-loss and stiffness adaptation, leading to
successful programming by interaction.

I. INTRODUCTION

With the demand for customized production, flexible
production lines for small batch sizes are required [1].
These production lines ask for flexible adaptation to varying
conditions [2]. Traditional position-controlled robots do not
provide these capabilities. Compliant interaction for robots
only become feasible, e.g., when using admittance control
[3], impedance control [4], or force control [5]. Depending
on the type of the robot and the controller, the tactile
performance may vary significantly [6].

Highly tactile robots enable human-like intelligent recog-
nition of touch and can perform sensitive tasks such as
polishing, screwing, levering, or cutting [7]. Ideally, with
those robots, the programmer only needs to command the
robot what task to perform and where to perform it to (re-
)program the robot task [8]. For example, when polishing
cars, the human would tell the robot to polish in a certain
spot and then quickly show it the next soiled spot while
the robot is still in motion. Just as one human would show
another where the polishing task is most required.

However, with the current state of the art in tactile robot
programming, fairly accurate positioning is required before

The authors are with the Chair of Robotics and Systems Intelligence,
MIRMI - Munich Institute of Robotics and Machine Intelligence, Technical
University of Munich, Germany ∗ and also with the Centre for Tactile In-
ternet with Human-in-the-Loop (CeTI). H. Sadeghian also has an affiliation
with University of Isfahan, 8174673441 Isfahan.

Corresponding Author: K. Karacan kuebra.karacan@tum.de
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Fig. 1: Adaptive tactile skills. The tactile skill library provides the
basic primitives to perform tactile robot tasks. In reality, however,
actual situations differ from those defined in the library. Therefore,
methods are required to extend the library and allow robots to adapt
these well-defined skills to a new environment.
the tactile task can be successfully performed [9]. This
requires expert knowledge and inefficient robot downtime
to (re-)program the robot action [10]. Therefore, to enable
flexible adaptation of tactile robot capabilities, new concepts
are required to simplify the (re-)programming of robot tasks.

In this paper, a tactile skill motion adaptation through
unified force-impedance control is proposed, as schematically
depicted by Fig. 1. Three tactile skill primitives are defined,
which are valid for any tactile robot-environment interaction;
namely contact initiation, manipulation, and contact termi-
nation. To enable robot (re-)programming by interaction, we
consider the manipulation primitive and design an adaptive
unified force-impedance controller. This controller couples
a stiffness-adaptive impedance control with force control to
passively adapt the manipulation primitive’s periodic motion
and direction of action. The result is a novel method ap-
plicable to any tactile robot skill, as it is illustrated in the
accompanying video. For the sake of clarity in the paper
we focus our explanation on the polishing task which is
demonstrated using a Franka Emika (FE) robot arm.

The paper is structured as follows. In Sec. II, we summa-
rize the state of the art. Section III introduces our proposed
framework for stiffness-adaptive tactile skills. The experi-
mental procedure as well as the results are presented in Sec.
IV and Sec. V. Finally, Sec. VI concludes the paper.

II. STATE OF THE ART

Robotic tactile skills such as polishing, screwing, un-
screwing, and levering require precise control of interaction
at the end-effector. In other words, tactile skills should
contain a motion generation unit with force policy. There
are different perspectives in the literature for combining
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motion generation and force control in robotic manipulators.
For instance, Zielenski et al. [11] studied a method that
classifies the manipulator behavior under three different
phases: free-motion where the force is of no significance,
exerting generalized forces, and lastly the transitions between
the latter two behaviors. Robot manipulators need to develop
complex perceptuomotor skills, as they further challenge
real-world problems [12]. Therefore, defining tactile skills
with a position control strategy alone is an impractical solu-
tion, and other control methods should be considered instead
[4]. Furthermore, force control has been considered in many
works, where the proposed controllers are validated based
on constant force values or as thresholds/constraints [13]–
[17]. However, the robots need to be robust enough to
autonomously operate in unstructured environments and per-
form desired tasks in the presence of perception uncertainties
[18].

Impedance control is a well-known approach that imposes
a dynamic behavior between the external interaction and the
desired motion, rather than tracking motion or force trajec-
tory independently [4]. These dynamics can be realized in the
joint space, operational space, or even in the redundant space
of a robot manipulator [19]. The impedance inertia, damping,
and stiffness parameters are usually selected constant in
each direction based on the assigned tasks. The impedance
dynamics represent a passive mapping between the external
force input and the motion of the robot as an output.
This ensures that the system does not generate additional
energy when interacting with the passive environment and
can therefore be considered stable [20]. However, adaptive
change of the impedance parameters seems beneficial as
well in many applications to impose a more wise and
human-like behavior for the external interaction on the EEF
[21]. Nevertheless, the variation of impedance parameters
compromises the passivity of the control loop and therefore
leads to instability. To this end, the concept of the energy
tank is exploited to alter the dynamics of the closed-loop
system and ensure passivity [22]. To include compliant force
tracking on the environment with unknown geometry, the
Wavelet Neural Network (WNN) has effectively been used in
[23]. The variable admittance approaches can also be used to
coordinate the human and robot motion in applications with
shared autonomy [24]. However, still, with the state of the
art in tactile robot programming, rather accurate positioning
needs to be ensured before the task is performed.

In this work, we demonstrate that the required skill motion
learning can be performed by adapting stiffness within uni-
fied force-impedance control, leveraging the energy transfer
between robot and environment. We extend the unified force-
impedance control paradigm by featuring control shaping
function dynamics to allow humans to adapt any tactile skill
by physical interaction.

III. METHODOLOGY

Our framework is based on adaptive force-impedance
control that can be used for dynamic programming of tactile
skill motions by interaction. To this end, we use stiffness

adaptation to enable programming by interaction and define
tactile skill primitives for motion learning.

The taxonomy for tactile skills is first applied at the
primitive level, and all the tactile skills are defined by three
basic primitives. Unified force-impedance control is then
extended to introduce the stiffness-adaptive dynamics to the
control shaping function. This allows humans to adapt each
tactile skill based on the energy transfer within the system.
The proposed framework is illustrated in Fig 2 and explained
in detail in the following.

A. Tactile primitives

To ensure compatibility with high-level planning and low-
level control algorithms, any tactile skill is decomposed into
three primitives. Each primitive Pi, contributed to the desired
skill, has its own policy (xd,fd) and, therefore, force-motion
generation unit:
P1– Contact initiation between tool and the work piece,
P2– Manipulation defined by a periodic motion and corre-

sponding force policy,
P3– Contact termination to stop the interaction and decide

if the desired skill is achieved.
The transition parameters between these primitives can

be derived automatically from the perception of the scene
through exteroceptive sensing and external user interac-
tion, or manually through predefined scenarios. A blending
strategy is then exploited for seamless integration of the
primitives to achieve the desired skills.

In this framework, P2 is the core of any skill. It is
defined by a periodic Dynamic Movement Primitive (DMP)
as motion generator. The DMP is composed of the frequency
and shape of the motion, and the required force policy is
designed to be constant in the direction of motion. For
adaptation of the motion, appropriate shaping functions are
modelled to allow human interaction and safe loss-of-contact
behavior, respectively, as described detailed in the following.

B. Stiffness-adaptive unified force-impedance control

The proposed control law for adaptive tactile skills is
extended from the unified force-impedance controller intro-
duced in [25] and comprises four main components:

I) tracking the desired motion xd,
II) initializing and controlling the desired force fd,

III) deciding on the robot stiffness level ρimp, and
IV) gravity compensation τg .

The robot dynamics equation in Cartesian space can be
expressed as

MC(q)ẍ+CC(q , q̇)ẋ+ gC(q) = fin + fext , (1)

τin = JT (q)fin , (2)

τg = JT (q)gC(q) , (3)

where the robot mass matrix, Coriolis/centrifugal matrix,
Jacobian matrix, and gravity vector in Cartesian space are
denoted as MC(q),CC(q, q̇),J(q) ∈ R6×6 and gC(q)
respectively. Furthermore, τin ∈ Rn is the control input
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Fig. 2: Block diagram for stiffness-adaptive tactile skill architec-
ture. Tactile skills are achieved by combining three basic primitives.
The core of any skill is the manipulation primitive defined by
a periodic motion and a desired force in the direction of action.
The controller shaping functions passively regulate the interaction
with the environment, such that ρimp allows motion adaptation by
interaction, and ρfrc is responsible for maintaining the contact force.

torque and fext ∈ R6 is the external wrench acting on the
robot.

The input torque, τin, is:

τin = τimp + τfrc + τg , (4)

where τimp, τfrc, and τg ∈ Rn are the input torques for the
impedance, force, and gravity respectively.

1) Force controller: To initiate and control a desired
contact force fd at the end-effector according to the external
force, fext, the force control is defined as

τfrc = ρfrcJ
T (q)ffrc , (5)

ffrc = fd + kp f̃ext + ki

∫
f̃ext dt+ kd

˙̃
fext , (6)

f̃ext = fd − fext , (7)

where ffrc ∈ R6 is the feedback and feed forward force term,
and kp, ki, kd are PID gains. The force shaping function ρfrc
in (5) deactivates the force controller, when the robot deviates
from the set-point of the end-effector. The idea behind the
shaping function is to avoid undesired motions, especially
when contact loss occurs. Therefore, ρfrc is designed with

three cases based on the deviation from the set-point

x̃ = xd − x. (8)

The first case resembles the condition before contact where
x̃z > 0 and, thus, the energetic potential fT

d x̃ ≥ 0. The
second condition is x̃z < 0 where the desired position is
violated and thus the energetic potential turns fT

d x̃ < 0.
To ensure a transition between both situations and prevent
errors due to a mismatch of force and motion direction, a
third case is included, which allows smooth reduction of
the control torque within a certain position range up to a
threshold δfrc > 0. This happens for example when the robot
loses the contact with a surface during polishing and falls in
z-direction. Finally, ρfrc becomes

ρfrc=





1 , x̃z ≥ 0

0.5(1 + cos(π( |x̃z|
δfrc

))) , 0 < |x̃z| ≤ δfrc ,
0 else

(9)

2) Energy-aware impedance controller: To introduce an
impedance behavior to the end-effector and allow human-
based skill adaptation, the following control law is applied,

τimp = JT (q)(KC x̃+DC
˙̃x+MC(q)ẍd +CC(q, q̇)ẋd) .

(10)

The stiffness and damping matrices are denoted by KC

and DC ∈ R6×6, respectively. The energy storage in the
closed loop system is operated by

S =
1

2
˙̃xTMC(q) ˙̃x+

1

2
x̃TKC x̃ . (11)

Considering (1), (5), and (10), the time derivative of (11) is

Ṡ= ˙̃xT (−CC(q, q̇) ˙̃x−DC
˙̃x−KC x̃− ffrc − fext)

+
1

2
˙̃xTṀC(q) ˙̃x+ ˙̃xTKC x̃+

1

2
x̃T K̇C x̃ , (12)

where the closed loop equation,

MC(q)¨̃x = −CC(q, q̇) ˙̃x−DC
˙̃x−KC x̃− ffrc − fext .

(13)

has been used. Note that the skew-symmetry of the ma-
trix (ṀC(q)−2CC(q, q̇)) is also applied. Considering (12)
and the positive-definiteness of the damping matrix DC , it
can be deduced that

Ṡ ≤ 1

2
x̃T K̇C x̃− ˙̃xTffrc − ẋT

d fext + ẋ
Tfext. (14)

Pacv,imp = −ẋT
d fext , (15)

Pacv,K =
1

2
x̃T K̇C x̃ , (16)

Pacv,frc = − ˙̃xTffrc , (17)

Pext = ẋ
Tfext , (18)

shows the passivity with respect to the summation of the
non-passive (i.e., active) control power Pacv as well as the
external power Pext.
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S−Pacv,imp Pacv,K

Dissipation
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Pacv,frc
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Fig. 3: Energy transfer scheme between robot and the environ-
ment. The energy is bounded by Smax, such that the stability of
the system during adaptation by interaction is preserved.

Here, we propose applying the derived energy models to
bound the energy transferred from the robot to the human
and to modulate the reaction of the robot to the human
interruption (see Fig. 3). In other words, the stiffness of
the robot changes with the shaping function, ρimp ∈ [0, 1],
where the stiffness adaptation rate, ρ̇imp, is formed based on
the energy storage function of the robot, S, and the power
inputs to the system < −ẋd, fext > , < ˙̃x, KC > by the
force-motion policy generator. Inspired by [26], the stiffness
adaptation is defined as

KC = ρimp(t)Kmax , (19)

and the adaptation parameter ρimp is obtained by

ρ̇imp =





min{ρ, 0} , ρimp = 1

ρ , 0 < ρimp < 1, ρimp(0) = 0,

max{ρ, 0} , ρimp = 0

(20)

where, ρ is given by

ρ = hρimp + ρmin, (21)

and,

h =
Smax − S
Smax

. (22)

Note that, in order to have an initial increment for the case
ρimp = 0, a small positive constant ρmin has been introduced
into the shaping function dynamics.

The above dynamic ensures that ρimp acts as a decreasing
or an increasing exponential function, for S > Smax and
S < Smax, respectively. Overall, this leads to a stiffness
behavior as follows.

KC =





fully autonomous , ρimp = 1 ∧ S < Smax

fully loose , S > Smax

shared autonomy , ρimp = 0 ∧ S < Smax

(23)

After S reaches the maximum allowable energy threshold
Smax, energy shaping starts1.

When the robot operates without any human interruption,
i.e., ρimp = 1, the stiffness equals its maximum value Kmax.
During human intervention, i.e., Pacv,imp < 0, the threshold

1For now, Smax is set heuristically by the user. Its autonomous adaptation
is left for future studies.

is exceeded since the human inserts energy to the system. As
the robot adapts its motion trajectory based on the human
guidance, ρ̇imp increases in (20), resulting in progressive
energy dissipation.

C. Force-motion policy

As mentioned before, the primitive P2 is defined as the
core of any tactile skill which is constituted by a periodic
motion and a matching force policy. A periodic motion
is comprised by its frequency Ω and shape ω. Moreover,
the motion generator is coupled to the controller via a
shaping function ρimp to allow autonomous adaptation and
teaching of new skill motions by the human. However,
for sake of clarity, we assume the desired force to be
constant during contact, so we concentrate on the developed
energy-awareness within our system on motion and stiffness
adaptation level.

1) Adaptive frequency oscillators: In order to extract the
frequency from a motion shown by the human operator,
we employ the online learning and modulation method for
periodic movements introduced in [27], which is shortly re-
viewed in the following. Generally, the core of the algorithm
is formed by the dynamics [26]

θ̇ = (1− ρimp)(ϕ− aE sin(θ)) , (24)

ϕ̇ = −(1− ρimp)(aE sin(θ)) , (25)
E = diag(x− x̂) , (26)

where a ∈ R is the coupling constant and error matrix
E ∈ Rm×m refers between the current position x and
predicted motion x̂, (1 − ρimp) introduces the progressive
learning and adaptation behavior to the system, such that
when the robot is fully autonomous ρimp = 1, the adaptation
stops. The frequency vector ϕ and the corresponding phase
vector θ belong to Rm, where m is the number of task space
coordinates to be adapted. The predicted motion is computed
by

x̂i =
M∑

c=0

(αi,c cos(cθi) + βi,c sin(cθi)), i = 1, 2, ...,m ,

(27)

where M denotes the number of Fourier components. The
amplitudes αi,c , βi,c are updated as follows.

[
α̇i,c

β̇i,c

]
=

[
(1− ρimp) µ cos(cθi) ei

(1− ρimp) µ sin(cθi) ei

]
. (28)

The error ei is the ith diagonal element of E, and µ is the
learning constant. Finally, the frequency Ω of the motion
generator is set to the minimum element of ϕ [28].

In this work, M , µ, and α are chosen to be 1, 1, and
50, respectively. The initial value for the phase vector is
θ0 = 2πIm×1.
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a) Experiment I and II: Stiffness-Adaptive Tactile Skill Motion Learning

b) Experiment II and III: contact loss during autonomous polishing with fd = 5N

ρimp = 1
ρfrc = 1 0 < ρfrc < 1

ρimp = 1

ρfrc=0
ρimp = 1

z
z

robot polishing
counterclockwise

human
interaction

polishing clockwise at
slower frequency

ffrc=0

fd=5N

ffrc̸=0

fd=5N

ρimp = 0

Fig. 4: Tactile robot polishing a surface. Image series for the experimental procedure a) Experiment I and II for passivity-based
stiffness-adaptation by human interaction: human adapts the speed and direction of the free and contact motion b) Experiment III shows
the performance of force and impedance shaping functions together: the robot autonomously and smoothly stops the force controller after
contact loss.

2) Motion generator: DMPs have been designed to repre-
sent a smooth robot motion [29]. A periodic DMP controlling
the motion of one degree of freedom m = 1, xd is given by
a second order differential equation system

ṡ = Ω , (29)
ż = Ω(αz(βz(xg − xd)− z) + γ(s)) , (30)
ẋ = Ωz , (31)

where xg the attractor point and s ∈ R is the phase
variable which is used to make the system time independent.
Furthermore, the constant parameters αz , βz > 0 are selected
such that the system has a unique attractor xg . The nonlinear
forcing term γ(s) is defined as

γ(s) =

∑N
i=1 ωiψi(s)∑N
i=1 ψi(s)

, (32)

ψi(s) = exp (h(cos(s− ci))) . (33)

This allows us to freely design periodic trajectories from
an initial position x0 to the goal xg by linear combination
of N radial-basis functions ψi(s). ci is the center of the
functions and h determines their width. In this work, we
choose N = 30 , αz = 20 , βz = 5 , h = 2.5, and ci =
2π
N (i − 1). The frequency Ω is chosen based on adaptive
frequency oscillators. The generated trajectory with xd , ẋd,
and ẍd is finally obtained by Euler integration of (31) with
the initial values s = 0 , x = x0 , and ẋ = Ωz = 0 . To
extract the shape of the motion namely the weight matrix
ω ∈ Rm×N , each weight vector ωi ∈ Rm where m = 3 is

updated by the recursive least squares as follows [27]

ωi(t+ 1) = ωi(t) + ψidiag(Pi(t+ 1))eri(t) , (34)

Pj,i(t+ 1) =
1

λ

(
Pj,i(t)−

Pj,i(t)
2

λ
ψi

+ Pj,i(t)

)
, (35)

eri(t) = (1− ρimp)(γd(t)− ωi) , (36)
Pj,i(0) = 1 , (37)

where γd the desired trajectory shape demonstrated by the
human [29]. The inverse covariance vector Pi ∈ Rm (i =
1, 2, ..., N ; j = 1, 2, ...,m) corresponding to the weights ωi

is computed by using the forgetting factor λ = 0.9995.
When the impedance shaping function ρimp, reaches 1, the

adaptation of the shape of the motion in (37) stops and is
accepted as successfully approximated to the desired shape.

3) Force policy: the force policy is especially useful to
mitigate the chattering/jamming behavior of the robot while
trying to maintain the contact force and the pose error is high
due to friction, etc. In this work, the force policy is chosen
to be constant at the direction of action and coupled to the
controller shaping function, ρfrc.

IV. EXPERIMENTAL PROCEDURE

To demonstrate the real-life performance of our frame-
work, the experiments are conducted using a Franka Emika
robot for a polishing use case (see Fig. 4). The experiments
were conducted considering three different cases:

I) passivity-based learning by interaction during free mo-
tion in adaptive unified force-impedance control,

II) adaptation by interaction during contact to validate the
overall adaptive tactile skill definition,
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III) performance of force and impedance shaping simulta-
neously.

To achieve robust and flexible behavior and to avoid long
run times, the primitives are connected using a sequencing
strategy [30], resulting in seamless and smooth integration
of the primitives into the desired skill. Additionally, the skill
definition enables straightforward and partly autonomous
programming of complex skills. Algorithm 1 illustrates the
procedure for an example scenario of polishing skill.

Algorithm 1 Skill definition for polishing

1: procedure POLISHING
2: parameter server← x0, xg , fd, ω, Ω, ρfrc, ρimp

3: contact initiation P1 ← xg

4: manipulation P2 ← x0, xg , Ω, ω, fd, ρfrc, ρimp

5: contact termination P3 ← xg

6: P1:
7: if xg = x then
8: go to P2 ▷ x0 = x
9: end if

10: P2:
11: if ρfrc < 1 then
12: go to P1 ▷ xg = x | fext ̸= 0
13: end if
14: if ρimp < 1 then
15: adapt Ω, ω
16: end if
17: if x = xg then
18: go to P3 ▷ x0 = x, ρfrc = 1
19: end if
20: P3:
21: if x = xg then
22: return success
23: end if
24: end procedure

Any tactile skill such as polishing is defined by combin-
ing the above primitives (contact initiation, manipulation,
and contact termination). Each of the primitives Pi(xd,fd)
comprises a DMP and force policy. Furthermore, the DMP
equation in (31) has the initial position x0 and the goal xg ,
which are varied between primitive skills and depends on
the sequencing strategy. To solve the dependency problems,
initial position x0 and goal xg are updated and combined
according to Algorithm 1. The idea behind this operation
is that when one primitive executes, this primitive policy is
updated to generate the motion xd and force trajectory fd.

A. Experiment I

In the first experiment, the robot starts to perform a cir-
cular motion autonomously ρimp = 1 and a human operator
interacts with the robot to vary the motion speed. Impedance
shaping ρimp activates the adaptation of the motion based on
the energy transfer between the robot and its environment,
as bounded by the maximum allowable energy Smax = 14 J.
The adaptation of the motion frequency Ω and xd vs x

a)

c) d)

b)

Fig. 5: Experiment I: Evolution of S, Ω and ρimp in free motion
during adaptation of xd a) and c) ρimp activates the adaptation
of the motion based on the energy transfer between robot and the
environment bounded by Smax = 14J. b) The adaptation of Ω d)
The adaptation of motion and comparison between the current state
xd and x based on the energy transfer.

are evaluated based on the energy transfer and impedance
shaping.

B. Experiment II

In the second set of experiments, the robot polishes
a surface and autonomously performs the entire stiffness-
adaptive tactile skill definition, starting with the contact
initiation primitive. Then, the manipulation primitive is acti-
vated to perform the polishing process by simultaneous force
application and motion. The robot applies the desired force
fd = 5N to the surface and executes the desired trajectory.
During the primitive manipulation of the polishing process,
the human operator interacts with the robot to adjust the
speed and shape of the executed motion. To allow the human
operator to interact with the robot during the contact skill,
the maximum energy bound is set to Smax =2J.

C. Experiment III

In the last set of experiments, the performance of the force
shaping function ρfrc during the contact-loss is validated. The
robot autonomously executes the entire framework, robustly
stopping and restoring contact via ρfrc. The applied force in
the direction of action ffrc,z is expected to change uniformly
from 5N to 0N after contact loss.

V. RESULTS AND DISCUSSION

The results for Experiment I in Fig. 5.a) and Fig. 5.c)
show that the impedance shaping function ρimp is activated
whenever the energy transfer between humans and robots is
above the predefined maximum energy level (Smax = 14 J).
More specifically, right after the interaction ρimp decreases
to 0 from 1 such that the stiffness is also zero KC = 0),
allowing humans to easily interact. Finally, the frequency of
the motion is adapted during the interaction with respect to
the guided motion. Additionally, the comparison between the
desired trajectory xd computed by the motion generator and
the current state of the robot x is depicted in Fig. 5.b) and
Fig. 5.d). Based on the results of the motion comparison,
the human operator is able to slow down the robot during
intervention and then speed it up again.

In Experiment II, it can be seen that in Fig. 6.a) and
Fig. 6.b), where the S is greater than Smax, the human
operator could change the shape and the frequency of the
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a)

c)

b)

Fig. 6: Experiment II: Evolution of S and ρimp, adaptation of
xd and yd in contact with the environment. Smax is set to 2 J
to enable the human to interact with the robot that polishes by
applying fd =5N on the surface.

motion. As expected, after interacting with the human, the
robot autonomously performs the rest of the adapted skill
using the contact initiation and termination primitives.

Finally, in Experiment III, the robot robustly and safely
stops the force controller by smoothly changing ρfrc from
one to zero as shown in Fig. 7.a). Consequently, the applied
force to the surface, fz , decrease to zero from 5N as depicted
in Fig. 7.b) and Fig. 7.d). Note that the robot is fully
autonomous during the force regulation, as can be seen from
the fact that ρimp = 1. Additionally, once contact with
the surface is restored, ρfrc is equal to 1 again and the
manipulation primitive continues to apply force and executes
the motion trajectory in parallel until another contact loss
occurs.

VI. CONCLUSION

In this study, we developed a framework for skill motion
learning in stiffness-adaptive unified force-impedance control
based on energy transfer between robot and environment.
The tactile capabilities are partitioned into three basic prim-
itives, contact initiation, manipulation, and contact termina-
tion. The passivity-based dynamics of impedance shaping
function is then introduced into unified force-impedance
control, which results in motion adaptation capabilities by
human interaction. We demonstrated the performance and
stability of our system in real-world experiments, such as
polishing a surface, unscrewing a knob, and levering a lid.
In this paper, the polishing task is presented, while in the
attached video the transition to other tasks is demonstrated

a)

b)

c)

d)

e)

Fig. 7: Experiment III: Evolution of ρimp and ρfrc during
polishing and adaptation of ffrc,z and motion x, y, z. a,b) The
robot autonomously executes ρimp = 1, robustly stops and re-
establishes contact via ρfrc. ffrc,z smoothly changes from 5N
to 0N during contact loss, thereafter increases to 5N with re-
establishing contact c-e) set point for contact xd, yd, zd vs. current
position of the robot x, y, z during contact, contact loss and re-
establishing contact

as well. In future work, we will investigate force learning
through stiffness adaptation and the decision-making process
for controlling the maximum allowable energy transfer be-
tween the robot and its environment during free and contact
motions.
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The Inherent Representation of Tactile Manipulation Using Unified
Force-Impedance Control

Kübra Karacan, Robin Jeanne Kirschner, Hamid Sadeghian, Fan Wu, and Sami Haddadin

Abstract— Different robotic manipulation tasks require dif-
ferent execution and planning strategies. Nevertheless, the ver-
satility of tasks in assembly and disassembly demands flexible
control strategies. Fundamental to achieving such adaptive con-
trol methods is understanding and generalizing the interactions
between tools, the manipulated object, and the environment
required to perform a manipulation. This paper addresses the
problem of generating adaptive manipulation by introducing
the force-velocity task phase plot that represents the inherent
nature of tactile manipulation skills. This representation enables
us to identify the primary phases of the interaction in the
force-velocity domain. Using unified force-impedance control,
we establish a tactile manipulation strategy to robustly conduct
versatile manipulation tasks even in case of disturbances or im-
precise task information. The proposed control scheme features
a dynamic process for impedance shaping based on the external
force applied to the robot and the skill motion error for collision
response, as well as a force-shaping function that enables both
a smooth transition from free motion to contact and force
regulation. We implement and compare the control strategy
to previously proposed strategies using peg-in-hole reference
experiments that include force disturbance and positioning
inaccuracies and show the respective task phase plots. As a
result, we observe high controller robustness and conclude that
using the task phase plot as the inherent representation of
tactile manipulation via unified force-impedance control enables
successful adaptive controller design and creates a quantifiable
basis for robotic skill solution comparison.

I. INTRODUCTION

Robotic manipulation plays a vital role in the digital trans-
formation of traditional factories, enabling the automation
of assembly and disassembly operations, e.g., for electronic
waste recycling [1]. Robotic solutions to such processes
require complex robot capabilities and robustness to varying
conditions [2]–[4]. For example, the dismantling procedure
for a battery from a heat cost allocator (see Fig. 1) includes
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heat-cost-
allocator

tool

fext
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Tactile skill representation

Tactile manipulation plan

Fig. 1: Pipeline from real-life application to tactile skill. Un-
derstanding the underlying system of a tactile skill by simplified
representations enables the derivation of manipulation plans that can
cope with environmental uncertainties for successful task execution.

(i) placing the tool in contact with the gap (pre-contact and
contact initiation); (ii) pushing the pin; (iii) levering the lid
and PCB; and (iv) separating the battery [5]. To obtain a
flexible automation solution to this versatile process, the
location, and dimension of the region of interest, like the
screw hole, can be obtained, e.g., by a camera. Even though
such external sensing suffers from uncertainties and may
provide imprecise positioning information, the robot should
robustly align the tool with the contact to execute the desired
tactile manipulation skills, such as pushing the pin, levering
the lid, and cutting the battery. Thus, besides precise motion,
a sense of touch has become crucial, which leads to the
definition of tactile manipulation skills [6]–[8].

The introduction of torque-controlled tactile robots capa-
ble of perceiving touch enabled robotic skills that require
force-motion commands and high compliance [9], [10]. To
allow these skills, multiple strategies are available, e.g.,
admittance control [11], impedance control [12], force con-
trol [13], and even unified control [14]. Numerous studies
consider force control as a solution to adaptive robotic skills,
validating the suggested controllers using constant force
values, thresholds, or limitations [15]–[19]. However, these
strategies cannot cope with environmental uncertainties and
may fail when faced with perception imprecision [20], [21].
Impedance control is a well-known technique that enforces
dynamic behavior for interacting with the environment and
the desired motion [12]. These dynamics can be achieved in
the joint space, operational space, or even the null space of
a robot manipulator [22]. Adaptive adjustment of impedance

Page 23 of 77
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ẋz

fext,z

1
23

4
5

6

23
4

fext,z > 0
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Fig. 2: Tactile skill representation. The task phase plot (fext, ẋ) is constrained by the desired state of the object, while the current
environmental conditions form its shape. A manipulation plan should be devised to enable smooth transitions between the phases.

parameters is helpful in many applications [23], [24]. In
applications with shared autonomy, variable impedance tech-
niques are also utilized to coordinate the motions of humans
and robots and update the desired skill motion policy [6].
Although the robotic community has been investigating
adaptive manipulation with perception uncertainties so far,
this is yet to be solved in principle and has not found
its way into the industrial application domain [25]–[28].
Consequently, the field of electronic waste recycling is still
primarily dominated by manual labor.

Successfully integrating adaptive robot manipulation skills
represents a highly complex problem that consists of desired
force and form closures between the robotic end-effector
and the objects to be manipulated. Despite multiple attempts
to solve adaptive manipulation, to the best of the authors’
knowledge, a methodological approach to skill development
starting with a formalism to represent the desired tactile
manipulation strategy is yet missing. In this study, we derive
a first representation of tactile skills based on unified force-
impedance control, namely the task phase plot. It describes
the entire cycle of a manipulation skill based on force and
velocity information. Using unified force-impedance control,
we use this formalism to develop a tactile manipulation strat-
egy for robust contact initiation and flexible manipulation
assuming inaccurate environmental information. The manip-
ulation approach is designed dynamically, using impedance
shaping to react to unforeseen contact and force-shaping to
initiate and shape desired contact conditions. Using a peg-
in-hole fitting experiment, we demonstrate the manipulation
method and derive the task phase plots for comparison with
state-of-the-art impedance and force controllers.

Additionally, we introduce the soft displacement metric
that tests the robustness of the introduced manipulation
strategy to position inaccuracies. We observe good posi-
tioning robustness and increased success of the introduced
manipulation strategy compared to other solutions. Lastly,
we present a possible extension of our controller for human-
robot interaction

The paper is organized as follows. Section II introduces
the inherent representation of tactile skills for robust contact
initiation and flexible manipulation under environmental and
positioning uncertainties, using unified force-impedance con-
trol. The experimental procedure and results are presented
consecutively in Sec. III and Sec. IV. Finally, Sec. V
concludes the paper.

II. METHODOLOGY

Physical interaction between two bodies requires robustly
establishing and maintaining the desired contact by either
force or form closure. Adapting to undesired contacts is one
enabling factor in maintaining contact forces or achieving
form fit. In this study, interaction skills that require motion
and force policies and compliant behavior are referred to as
tactile manipulation skills.

A. Tactile Skill Representation

Any tactile process such as peg-in-hole followed by releas-
ing is defined with certain boundary conditions, i.e., motion
and force. Ideally, the task phase plot, as shown in Fig. 2,
demonstrates the entire cycle that the peg goes through, in
which the force-velocity relation evolves:
1 - starting moving freely fext = 06×1 toward the hole,

while speeding up to ẋ6×1,
2 - smoothly establishing contact ẋz = 0 with the bottom

surface, while an external force fext,z > 0 is exerted to
it,

3 - breaking contact δfext,z = 0 while moving ẋz ,
4 - back to the free condition fext,z and ẋz .

However, the actual motion of the peg and the force ex-
erted are formed based on force/wrench and twist constraints
imposed by the environmental conditions, such as undesired
contacts due to positioning imprecision. Here, the phases of
tactile interaction repeat within the phase plot as contact is
established multiple times before the desired goal state is
achieved. Consequently, a tactile manipulation strategy is
required to adapt the desired force and motion of the peg
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Fig. 3: A simplified scheme of elements in the dismantling process of a heat cost allocator to recycle the battery. The gap location
xc is assumed to be obtained externally. Impedance control is followed by desired motion xd. To insert the tool, a wiggle motion is
applied via a feed-forward force fff . When force control is activated, a desired force fd establishes contact with the surface to make tool
alignment possible. Stiffness adaptation enables the robot to have compliant behavior to adjust itself to the environment.

between the phases, leading to robust and successful task
execution.

B. Tactile Manipulation Strategy

Using force-impedance control, we develop a tactile ma-
nipulation plan for robust contact initiation and flexible
manipulation under positioning inaccuracies, as shown in
the example of a peg-in-hole task for heat cost allocator
disassembly in Fig. 3. First, we design a dynamic process
for impedance shaping based on the external force exerted
on the robot and the skill motion error to allow the robot
to adjust its end-effector in response to incidental contact.
Second, we create a force shaping function to enable (i) a
smooth transition from free motion to contact (pre-contact
shaping) and (ii) force regulation based on the desired tool
alignment (contact shaping).

1) Control design: To control robot arm motion and
force policies with n-DOF, the desired pose of the end-
effector w.r.t. the robot base frame is xd ∈ R6. The robot’s
dynamics equation in Cartesian space in the base frame is

MC(q)ẍ+CC(q, q̇)ẋ+ fg(q) = fin + fext (1)

where fext ∈ R6 is the external wrench w.r.t. the base frame.
MC(q) is the robot mass matrix, CC(q, q̇) ∈ R6×6 is the
Coriolis and centrifugal matrix, and fg(q) is the gravity
vector in Cartesian space. Furthermore, fin is the wrench
applied by the robot and relates to the joint control torque
τin ∈ Rn by τin = JT (q)fin. Next, we design a control
algorithm for the input torque τin to perform the desired task.
The proposed control law for adaptive tactile skills shown in
Fig. 4 is extended from unified force-impedance control [6],
[14] and comprises four main components:

I) tracking the desired motion xd and adapting the robot
stiffness level (ρimp) with impedance control,

II) applying feed-forward force fff ,
III) regulating the external force fext w.r.t. the desired force

fd,
IV) gravity compensation for the robot.
The input torque τin ∈ Rn is:

τin = τimp + τff + τfrc + τg , (2)

where τimp, τff , τfrc, and τg ∈ Rn are the input torques for
(i) impedance control, (ii) feed-forward torque, (iii) force
control, and (iv) gravity compensation.

2) Variable impedance control: The following control
law is defined to establish the desired Cartesian impedance
behavior on the tooltip.

τimp = JT (q)(KC x̃+DC
˙̃x+MC(q)ẍd +CC(q, q̇)ẋd),

x̃ = xd − x, (3)

where x ∈ R6 is the actual pose of the end-effector in the
base frame, and the pose error is x̃. Moreover, KC and
DC ∈ R6×6 are diagonal stiffness and damping matrices,
respectively. The desired Cartesian inertia is assumed to be
the robot inertia in Cartesian space. The difference between
the desired and actual contact leads to a deviation from the
desired pose xd, which alters x̃, or the exerted force fext.
Therefore, we use a metric h to adapt the stiffness matrix
KC in impedance control according to the external force and
the pose error:

S = ∥fT
extx̃∥ , (4)

h = 1− S

St
. (5)

Here, having the threshold St is crucial to compensate for
minor effects of the environment, i.e., surface friction and
measurement error 1. The h is then coupled to KC via ρimp:

KC = ρimp(t)Kmax , (6)

where the adaptation parameter ρimp is obtained by

ρ̇imp =





min{ρ, 0} , ρimp = 1

ρ , 0 < ρimp < 1, ρimp(0) = 0,

max{ρ, 0} , ρimp = 0

(7)

and ρ is given by

ρ = hρimp + ρmin. (8)

Note that, to have an initial increment for the case ρimp = 0,
a small positive constant ρmin has been introduced into the
shaping function dynamics.

1Please note that using pose instead of velocity or acceleration leads to
having a comparably less noisy signal
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3) Force control: The force control is defined to maintain
the desired contact force f ee

d ∈ R6 applied by the robot w.r.t.
the external force f ee

ext ∈ R6 as follows

τfrc = ρfrcJ(q)
Tffrc, (9)

ffrc =

[
[RO

ee]3×3 03×3

03×3 [RO
ee]3×3

]
(f ee

d +Kp f̃ ee
ext+

Ki

∫
f̃ ee
ext dt+Kd

˙̃
f ee
ext) , (10)

f̃ ee
ext = f ee

d + f ee
ext , (11)

where ffrc ∈ R6 is a feedback force controller in the base
frame rotated by RO

ee. The PID controller gains are the
diagonal matrices of Kp, Ki, Kd ∈ R6×6. Moreover, the
force shaping function ρfrc decides to activate or deactivate
the force controller based on the defined conditions

ρfrc = ρimpρpcρc . (12)

To avoid phase switching, we define the force shaping
function ρfrc by combining ρpc and ρc. When the tool is
close to the desired contact surface by δpc > 0, force control
is activated smoothly, and its weight is equal to one at xmin.
During the contact, the robot tolerates the tool alignment
error up to a certain threshold of δc > 0. For instance,
force control is deactivated if the robot loses contact with the
surface due to a large tool alignment error. Thus, the robot
becomes only impedance-controlled and tracks the desired
motion. Pre-contact shaping ρpc is designed based on the
distance between the tool and the desired contact surface in
the z-direction in the task frame x̃c = xc − x:

ρpc=





1 , xmin ≤ x̃c,z

1
2 (1 + cos((

xmin−x̃c,z

δpc
)π)) , xmin > x̃c,z ≥

xmin − δpc

0 , otherwise.

(13)

Contact shaping ρc as a function of tool alignment error
fT
d x̃ by bounding it with the limits of Smin and δc > 0:

ρc=





1 , fT
d x̃c ≤ Smin

1
2 (1 + cos((

fT
d x̃c−Smin

δc
)π)) , Smin < fT

d x̃c ≤
Smin + δc

0 , otherwise.

(14)

When the robot is fully compliant ρimp = 0, it becomes
adjustable to the environment. After reaching its maximum
stiffness, the robot is adapted to the current environmental
conditions and restarts the desired motion from its current
configuration.

Finally, the closed-loop equation for the overall system
becomes the following

MC(q)¨̃x+CC(q, q̇) ˙̃x+DC
˙̃x+KC x̃+

ffrc + fff + fext = 0 . (15)

Tactile robot
under

adaptive unified
force-impedance

control

Interaction

Impedance Shaping

Force Shaping

Pre-contact
and

contact force
shaping

Tactile Skill

Contact initiation
Manipulation

Stiffness variation
based on

unexpected contact

ρc

ρimp

fext

fext

fd
xd

ffrc
x

ρpc

Fig. 4: Tactile manipulation strategy. The controller shaping
functions ensure robust and safe interaction with the environment.

In addition, to ensure controller stability, which might be
compromised due to variable impedance [29], the Lyapunov
candidate function is

V =
1

2
˙̃xTMC

˙̃x+
1

2
x̃TKC x̃ . (16)

Differentiating V and rearranging the corresponding terms
for fext = 0 and the constant MC result in

V̇ = − ˙̃xTDC
˙̃x+

1

2
x̃T K̇C x̃ . (17)

Due to the term K̇C , the eigenvalues of the stiffness matrix
KC should be constant or decreasing for x̃ ̸= 0. It can be
deduced from Eq. 6 that the rate of change of the stiffness
matrix K̇C is directly proportional to the rate of change of
the adaption parameter ρ̇imp:

K̇C = ρ̇impKmax . (18)

Furthermore, once the motion error x̃ exceeds defined thresh-
olds in Eq. 4, 5, and 8, by the definition of ρ̇imp = min{ρ, 0}
in Eq. 7, KC decreases due to ρ̇imp < 0. Stiffness KC

increases again; only the motion error and external force
are within the thresholds. Briefly, while the motion error x̃
exists, the stiffness KC decreases:

KC =





constant stiffness Kmax, ρimp = 1 ∧ x̃ = 0

decreases, x̃ ̸= 0

increases to Kmax, ρimp ̸= 1 ∧ x̃ = 0

(19)

Please note that one might also install virtual energy tanks
to ensure the passivity of the whole system as a sufficient
condition to achieve stability [30].
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TABLE I: Control parameters used in the experiments.

Parameter Unit Value

ẋz m/s 0.002

Kx,imp and Kx,afic N/m diag[1000, 1000, 1000, 150, 150, 150]

ξ Ns/m diag[0.7, 0.7, 0.7, 1, 1, 1]

fee
d N [0, 0, 10, 0, 0, 0]

Kp,Ki,Kd − 2.0I6×6, 1.0I6×6, 0I6×6

Kx,fic N/m diag[1000, 1000, 100, 150, 150, 150]

St Nm 1.0

δpc m 0.002

δc Nm 0.5

xmin m −0.001

Smin Nm 0.002

III. EXPERIMENTAL VALIDATION

In particular, the protocol for recycling the battery from a
heat cost allocator is: (i) placing the tool in contact with the
gap (pre-contact and contact initiation); (ii) pushing the pin;
(iii) levering the lid and PCB, and (iv) separating the battery.
In a simplified form, the requirements of the dismantling
protocol are (i) contact initiation, going to the gap with a
specific orientation; (ii) establishing contact, tool alignment
with the desired contact (gap); and (iii) manipulation: force
and motion profile. Finally, the task performance is evalu-
ated regarding position accuracy, motion profile error, force
tolerance, force profile error, and compliance. We formulate
contact initiation and establish contact under perception un-
certainties as a peg-in-hole problem to obtain a reproducible
reference setup to measure the controller performances. A
Franka Emika robot is used for the experiments, and the
robot’s internal sensing records the position, velocity, and
external end-effector force.

A. Contact Initiation: Peg-in-hole

A peg manufactured with fitting tolerance (< 0.1mm)
can be inserted via wiggle motion. In experiments, wiggle
motion is realized by adding a feed-forward force term to the
controller as a function of amplitude a = −3N, frequency
ω = 3Hz, and time t,

fff = [0, a cos(2πωt), 0, 0, 0, 0] . (20)

The length and diameter of the peg are 20mm and 3mm,
respectively.

Experiment 1: In the first set of experiments, four differ-
ent control methods are compared: (i) impedance, (ii) force,
(iii) force-impedance, and (iv) adaptive force-impedance con-
trol. The robot starts with non-contact 2mm above the hole.
Afterward, it freely moves and establishes contact. Finally,
the robot is expected to insert the peg until it is in contact
with the bottom of the hole. The control parameters used in
the experiments are listed in Tab. I.

Experiment 2: The application of force-impedance con-
trol promises to enable coping with displacement impreci-
sion, especially for interaction tasks. We introduce the soft
displacement metric to quantify this capability. This metric

analyses the displacement from the ideal insertion line for a
peg-in-hole application starting from which the peg-in-hole
operation is still successful based on robot compliance. The
time to complete the task and the peak forces can be used
to evaluate the controller’s quality. In the experiment, the
initial robot position x0 is displaced towards the location of
the hole, xc, by δpc = 2mm in the z-direction:

xc,z = x0,z − δpc . (21)

Once the robot is compliant, the initial pose is updated
with the current pose. Thus, the robot reactivates the force
controller within the defined thresholds. The experiments
are repeated three times, using the displacements 3, 9, and
15mm in the y-direction successively.

Experiment 3: We present a possible use case for our
method in human-robot interaction to enable collaborative
working. The impedance shaping function decreases the
robot’s stiffness when a human applies force. Using this
compliant behavior, the human expert puts the robot into
another contact, and then the robot is expected to insert the
peg.

IV. RESULTS AND DISCUSSION

The following section presents our experimental results
in order of the three conducted experiments. All results
are plotted based on the distance between the initial and
current end-effector position w.r.t the base frame. As the
peg length is of 20mm, it is also the maximum distance
the robot may travel in the z-direction. Therefore, if 20mm
distance along the z-direction and an approximate velocity
of 0mm/s are reached, we rate the task completion as
successful. Additionally, the task phase plot is developed
with the external force and velocity in the z-direction, which
also translates to the power evolution during the task. It is
presented in the robot task space.

The results of position and force over time and the task
phase plots for Experiment 1 are shown in Fig. 5.

For controller the impedance controller, Fig. 5a), at first,
the wiggle motion is dominant in the position plot. Then,
the insertion starts, and the corresponding external forces
increase. The robot successfully inserts the peg after 13 s.
However, there is no significant contact force until after
10 s, the robot senses the external force due to tolerance
adjustment during insertion. After hitting the bottom of the
hole, the robot measures a force value of around 10N.
Moreover, as there is no specified goal, the robot tries to
move further at the bottom and gives a Cartesian reflex error.

Using the force controller shows that the robot controls
the force well below the desired maximum of 10N, Fig. 5b).
However, as can be seen in the task phase and position plot,
the robot fails to slow down and gives an error after 0.2 s
due to embedded safety around 150mm/s.

Next, in Fig. 5c) unified force-impedance control is ap-
plied, which commands low stiffness in the insertion direc-
tion to utilize compliant behavior as well as the tactility
of the robot. Similarly to the force controller results, the
force-impedance controlled force stays mainly below the
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d)

Fig. 5: Results of Experiment 1: Comparative results for dif-
ferent controllers. Position (current distance to the initial position
in the x, y, and z direction in the base frame) vs. time, force in the
z-direction in the task frame vs. time, and force in the z-direction
in the task frame vs. velocity in the task frame (task phase plot)
Arrows proceed in time. a) Impedance control b) Force control with
10N in the z-direction c) Force impedance control with 10N in the
z-direction d) Adaptive force impedance control with 10N in the
z-direction

desired threshold, besides a short overshoot with 0.05 s
duration. Nevertheless, just like the force controller, the
force-impedance control cannot close the loop in the task
phase plot without a specified end condition.

Finally, unified force-impedance control with adaptive
stiffness is tested, shown in Fig. Fig. 5d). If there is no
contact, the controller acts as pure impedance control. When
the robot is close to the hole by δpc, force control is
activated, and its weight reaches 1 after xmin. When the peg
enters the hole without obstruction, as there is no contact to
maintain due to the tool alignment error, the force control’s
weight decreases. Thus, the robot becomes only impedance-
controlled and tracks the desired linear motion in the z-
direction. Whenever the robot reaches the bottom, it stops
due to the low stiffness, as seen in the task phase plot.

Using adaptive force-impedance control, in Experiment
2, we observe how compliant behavior allows to correct
previous robot tool displacement of varying distances to
achieve the peg-in-hole even if the robot is imperfectly
positioned, as shown in Fig. 6.

Overall, in all cases, the peg-in-hole task is successfully
conducted, regardless of the initial displacement of 0, 3, 9,

a)

b)

c)

d)

hole
bottom

Fig. 6: Results of Experiment 2: Soft displacement. Using
adaptive force-impedance control, starting at various distances in
the y direction in the base frame to the center of the hole. Position
(current distance to the initial position in the x, y, and z-direction
in the base frame) vs. time, force-impedance shaping function vs.
time, force in the z-direction in the task frame vs. time, and force
in the z-direction in the task frame vs. velocity in the task frame
(task phase plot) a) 0mm b) 3mm c) 9mm d) 15mm

or 15mm as shown in Fig. 6 a), b), c), and d), respectively.
In the position plot, the robot’s motion along the y-direction
shows the distance from the hole where the robot starts to
move. The robot begins the wiggle motion, and the stiffness
becomes low due to external force and motion error. Using
the momentum caused by the feed-forward force, the robot
moves towards the hole compliantly. Notably, the direction
of the feed-forward force influences the soft displacement
experiments, and it should be towards the hole. This proce-
dure repeats until the robot reaches the desired contact at the
bottom of the hole.

In Experiment 3, the robot encounters an additional
contact with the human operator while inserting the peg,
shown in Fig. 6. At this contact, the robot becomes compliant
again owing to stiffness adaptation. After this contact is
released, the robot adjusts to the new environment and
updates the initial position with the current one. The force
control is again activated to maintain contact up to a certain
threshold δc, as shown in the force plots in Fig. 6b), c), and
d). This helps the robot restart applying force as we choose
the desired contact 2mm away from the initial position. In
other words, the robot can perceive touch as a human does
with a fingertip.

Incidental contact with the human expert leads to a de-
crease in the robot’s stiffness. Thus, the human moves the
robot to another region of interest as if in guiding mode. The
human expert puts the robot into another contact to insert the
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Fig. 7: Results of Experiment 3: Results for human-robot
interaction using adaptive unified force-impedance control a)
Distance between the end-effector’s current and initial position in
x, y, and z-direction b) Force-Impedance shaping functions c) Force
vs. time d) Task phase plot

peg, as shown in Fig.7. According to ISO 15066, the robot’s
velocity can be considered within the safe limits for hand-
guided human-robot collaboration (250mm/s) [31].

The limitation of the presented control scheme is to design
the control parameters wisely beforehand. For instance, δpc
should not be smaller than the vertical distance to the surface.

V. CONCLUSION

Digital transformation of traditional factories requires
robots to perform tactile skills under varying conditions.
However, a tactile manipulation strategy is yet to be devel-
oped to handle unexpected situations and inaccurate envi-
ronment models. Therefore, we propose designing such a
manipulation strategy by analysis of the underlying system.
For that, we apply the inherent representation of manipu-
lation tasks, namely the force-velocity task phase plot, to
identify relevant phases and enable the design of controllers
that can smoothly adapt between these phases. Based on this
representation, we design a unified force-impedance control
method for reliable contact initiation and flexible manipula-
tion under positioning and environmental uncertainties. First,
based on the external force applied to the robot and the skill
motion error, we design a dynamic process for impedance
shaping to enable the robot to adjust its end-effector in
response to unforeseen contact. Second, we establish a force
shaping function that includes (i) a smooth transition from
free motion to contact (pre-contact shaping) and (ii) force
regulation based on the desired tool alignment (contact

shaping). Third, to compare our results with a reference
setup, we observe our control scheme’s capability to succeed
in the desired task under positioning inaccuracy using the
example of a peg-in-hole skill.

Furthermore, we compare four controllers to evaluate the
success rate based on their respective task phase plots.
As a result of the controller comparison, the importance
of commanding force and motion policies with compliant
behavior becomes apparent. Finally, we show how our force-
impedance shaping in unified force-impedance control in-
creases robustness for contact initiation and flexibility during
manipulation. We also demonstrate a potential extension of
our method to human-robot interaction.

The presented work shows the potential of the force-
velocity task phase plot as a foundation for robotic skill
design and comparison based on peg-in-hole insertion and
removal. Future work will investigate in depth the applicabil-
ity of this manipulation representation for creating versatile
tasks.
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A B S T R A C T

The paper addresses the issue of learning tasks where a robot maintains permanent contact with the
environment. We propose a new methodology based on a hierarchical learning scheme coupled with task
representation through directed graphs. These graphs are constituted of nodes and branches that correspond to
the states and robotic actions, respectively. The upper level of the hierarchy essentially operates as a decision-
making algorithm. It leverages reinforcement learning (RL) techniques to facilitate optimal decision-making.
The actions are generated by a constraint-space following (CSF) controller that autonomously identifies feasible
directions for motion. The controller generates robot motion by adjusting its stiffness in the direction defined
by the Frenet–Serret frame, which is aligned with the robot path. The proposed framework was experimentally
verified through a series of challenging robotic tasks such as maze learning, door opening, learning to shift
the manual car gear, and learning car license plate light assembly by disassembly.

1. Introduction

Many robot tasks require tight contact with the environment. Such
tasks are common in industrial environments, e.g. in assembly opera-
tions and in domestic environments, where the robot has to perform
operations like opening doors and drawers to access different rooms
or objects. They are generally considered hard to learn, as the robot
needs to learn a policy composed of poses and wrenches while inter-
acting with an unknown and possibly changing environment. Imitation
learning is a widely used paradigm to effectively specify tasks in contact
with the environment [1]. However, involving a human teacher in the
learning process is not always desirable. Especially for robots operating
in unstructured environments, it is often beneficial if they can learn
new contact skills by themselves. This requires lengthy task adaptation
procedures, which are usually realized based on reinforcement learning
(RL) [2] or iterative learning control (ILC) [3].

While user-friendly programming approaches and hardware recon-
figurability capabilities have long been used to enhance the capabilities
of industrial applications [4,5], autonomous learning is still considered
too time-consuming for such settings. Lengthy policy learning and
refinement processes hinder the practical application of autonomous
learning algorithms and the deployment of robots in unstructured and
complex industrial environments. For applications in flexible, small-
scale production, characterized by a wide variety of assembly tasks,
it is very important to reduce the programming effort and the required
skill level of the operator. This problem is even more pronounced when

∗ Corresponding author.
E-mail addresses: mihael.simonic@ijs.si (M. Simonič), ales.ude@ijs.si (A. Ude), bojan.nemec@ijs.si (B. Nemec).

introducing robots into inherently unstructured home environments,
where we cannot expect the help of experienced operators.

The aim of this paper is to introduce a new methodology that
enables a robot to quickly and autonomously acquire new contact skills,
even without previous imitation learning. To this end, we propose a
new approach to learning robotic tasks where physical contact with
the environment contributes to faster learning. The proposed approach
is based on the observation that learning physically constrained tasks,
can be structured more efficiently than learning tasks where a robot
moves freely in space. The reason for this is that the environment
constrains the admissible movement directions, thereby limiting the
search space. Consequently, the number of parameters that need to be
learned is significantly reduced. To implement this type of learning, we
need to allow the environmental constraints to determine the robot’s
motion. The concept of compliant robot control provides a suitable
framework for implementing such a strategy. The early stage of this
concept was applied in our previous work, where we demonstrated how
robots could learn tasks with physical constraints, e.g., opening doors
and drawers [6], and how to learn assembly tasks by disassembly [7].

The main contribution of this paper is a comprehensive framework
for autonomous learning of complex skills where the robot maintains
contact with the environment. The key components of this framework
are:

• Graph-based task representation: We propose a graph-based rep-
resentation that enables hierarchical decomposition of complex

https://doi.org/10.1016/j.rcim.2023.102657
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contact policies. This representation allows for efficient and fully
autonomous learning of these skills.

• Constraint-space following (CSF) controller: The paper introduces
a CSF controller that facilitates autonomous exploration within
constrained spaces. This controller relies on robust estimation of
the tangential direction of motion and utilizes the Frenet–Serret
(FS) formulas to specify variable compliance along the robot’s
motion trajectory.

• Graph topology determination algorithm: The paper presents a
novel algorithm that autonomously discovers the graph topology
of the task representation. This algorithm surpasses the previous
approach [7] in terms of execution speed, allowing for faster
learning.

• Learning the optimal sequence of movements: The framework
includes RL algorithm for learning the optimal sequence of move-
ments within the graph representation of the task. This way, the
robot can efficiently perform complex contact tasks.

In summary, the paper contributes to the field of autonomous robotics
by presenting a comprehensive framework that combines a graph-
based task representation, an algorithm for graph topology discovery,
optimal control policy learning, and a CSF controller. To the best of our
knowledge, the proposed methodology is the first framework capable
of entirely autonomous learning of tasks where the environment con-
strains the robot’s motion. Moreover, the learning speed is comparable
to that of humans. The validity of the proposed approach has been
demonstrated by learning four challenging tasks taken from everyday
life and industrial environments.

This paper consists of five sections. In Section 2, we briefly review
existing approaches to learning contact policies. Our main contribution
is a new scheme for learning such policies based on a Hierarchical
Reinforcement Learning (HRL), which is presented in Section 3. The
experimental evaluation presented in Section 4 considers four challeng-
ing tasks: maze learning, door opening, learning to shift a manual car
gearbox, and learning to assemble a car license plate by disassembly.
The discussion and final conclusions are provided in Section 5.

2. Related work

A lot of research on learning tasks that involve contact-rich manipu-
lation in unstructured environments has been performed in the past. A
comprehensive survey paper on robots performing manipulation tasks
that require varying contact with the environment has been published
recently [8]. This section focuses on learning-based approaches [9].

The most basic and straightforward approaches are based on the It-
erative Learning Control paradigm (ILC), which has been used to adapt
the trajectory of tasks involving contact with the environment [10,
11]. These approaches minimize force tracking errors but cannot im-
prove the desired force–torque contact profile. More general are the
approaches based on reinforcement learning (RL), which has been
successfully applied for learning tasks such as door opening and picking
a pen from the table [12]. However, this type of learning requires
approximately a hundred trials to learn the policy and is slow compared
to humans. Learning of contact-rich tasks is closely related to the
learning of impedance parameters, as proven in [13], where the authors
addressed deep learning in action space. Imitation can increase learning
speed, as demonstrated in the wood planing experiment [14], where
RL enhanced the skill transfer from humans to robots. In [15], the
authors proposed Guided Policy Search to handle contact-rich tasks.
Initialized by demonstration and optimized by 𝑃𝐼2 RL algorithm, the
local policies were used to generate a global policy using deep neural
networks (DNN) and robot joint torques directly from the visual input.
A DNN was also applied for learning a peg-in-hole (PiH) task without
prior demonstration [16], where a robot learned the desired search and
insertion policy using the deep Q-learning algorithm. After 100–200 tri-
als, the robot learned a robust search and insertion policy. To increase

the data efficiency and learning speed, a hierarchical RL scheme was
proposed and applied to a dual PiH task [17]. PiH was also addressed
in [18], where the authors applied movement primitives encoded as a
neural network and a deep deterministic policy gradient algorithm for
learning neural network parameters. The learning efficiency was also
pursued in [19], where the authors proposed learning meta-parameters
to encode a specific skill in combination with an adaptive impedance
controller. Another recent approach to autonomous learning of contact
tasks is based on observing time-reversed visual cues, enabling one to
learn the policy without previous demonstration or exploration [20].
Very similar objectives were also pursued in the recent study [21],
where the aim was to learn a shape descriptor that establishes geomet-
ric correspondences between object surfaces and their target locations
directly from the visual stream.

In this paper, we propose a new approach to learning contact-rich
tasks based on a hierarchical learning scheme. In this respect, our
approach is related to the approach described in [17], except that in our
case, the highest hierarchical level is decision learning, and the lowest
level includes a variable compliance controller to move along the
physical constraints of the environment. It is also partly related to the
approaches proposed in [20,21], as we also learn the reverse policies
of assembly tasks [7]. There are also some similarities between our
research and [19], where they also used a directed graph to represent
the learned policy. However, there is a significant difference between
the two approaches in the purpose and construction of the graph.

One of the main advantages of our approach is its high learning
speed, which exceeds the performance of reinforcement and deep re-
inforcement learning methods that do not exploit the constraints of
contact tasks. The high learning speed is achieved by a meaningful
decomposition of the task into the determination of environmental
constraints and the decision level, which is implemented by a hier-
archical learning scheme. In addition, the proposed graph-based task
representation provides a better insight into the nature of the problem.
The proposed algorithm does not require prior knowledge of this graph
but builds it autonomously through exploration.

3. Learning of contact policies with hierarchical learning

Our approach to learning contact tasks exploits the configurations
that allow only partial freedom of motion, both in terms of position and
orientation. The boundary between the region where the robot’s motion
is constrained by the environment and the region where the motion is
free is called a C-surface [22]. Motion is possible along the tangential
directions of the C-surface and constrained along the orthogonal direc-
tions. The dimension of the C-surface determines the number of degrees
of freedom of a physically feasible robot motion. Our research considers
tasks with one dimensional C-surface, which is typical for assembly
tasks. We further assume that the task consists of different motion
primitives that can be combined to form a longer action sequence. Each
motion primitive is associated with a one-dimensional C-surface. The
sequence of motion primitives can be such that we have more choices
on how to proceed with the task. For example, consider the shifting
of car gears, as discussed in Section 4.3. When moving the gear lever
from neutral to the left, we have two options: turn up to the first gear
or turn down to the second gear. Such a sequence with branches can
be represented with a graph, where nodes represent various key states
of the task and edges represent motion primitives constrained by the
environment [7].

An example of such a graph is shown in Fig. 1. The nodes represent
the key states and the edges represent the robot movements between
the key states of the task. The start node (colored yellow) can be
anywhere in the graph and denotes the initial state of the task. The node
is characterized by how many branches start from each node, called the
degree of the node. In a node of degree 2 or more (colored orange),
the robot must decide how to proceed. In a node of degree 1 (colored
blue), we do not have multiple options of how to continue the task, but
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Fig. 1. The proposed graph-based representation of contact tasks in a general form.

to continue we must choose a completely different direction or type of
motion; for example, a translational motion changes to a rotational or
vice versa. A node of degree zero (colored white) represents stages of
the task where the motion can only be continued by turning back. The
goal is to reach the target node (colored green).

Graphs are often used to represent sequences of assembly and
disassembly motions [23–25]. In general, a graph, possibly directed, is
a conceptual representation of a sequence of activities. In our approach,
a graph represents a single, optimal policy for the execution of a contact
task. By joining multiple such graphs, more complex tasks that consist
of several contact tasks can be represented (as shown in Fig. 12, where
a human demonstrated the necessary movement between two contact
tasks).

Let us now assume that we do not know how to execute a contact
task in advance, but we do know the starting point of the task and
what the target state is. Consequently, we do not know the topology of
the graph, the intermediate nodes, and the actions for the transition
between individual nodes. Thus the robot should learn this through
autonomous exploration. Furthermore, it has to learn the optimal policy
from the start node to the target node, i.e. the optimal sequence of
movement primitives to accomplish the given task.

3.1. Hierarchical reinforcement learning

The complexity of learning problems can sometimes be reduced by
hierarchical learning schemes, which split the learning problem into
sub-tasks with multiple levels of hierarchy. In this section, we explain
our hierarchical scheme (see Fig. 2) on the example of maze learning,
where the goal is to move from the start to the target node (see Fig. 5
and Fig. 6). Note that the maze constrains the possible robot motion.
It is natural to use a graph representation to represent the points in
the maze where there are multiple directions in which the robot can
continue its motion or where the robot can only continue its motion by
turning back.

The graph representation of the task is not known in advance
but must be learned. We initialize the learning process with a graph
that has only one node, i.e. the start node. Each node is associated
with the robot pose in this state (and, in some cases, several pre-
ceding poses). The initial node is associated with the robot pose at
the beginning of the task execution. Using the proposed approach,
the robot autonomously explores the environment along its constraints
(lowest level) and identifies new states (nodes) and actions (edges) that
cause a transition between the states (middle level). The actions are
represented by the motion trajectories that specify the robot motion
between the connected nodes. The reinforcement learning algorithm
at the top of the hierarchical scheme learns the optimal movement
sequence from the start to the target node.

On the shortcomings of traditional shortest path searching algorithms. The
design of the search algorithm at the highest hierarchical level depends
on the complexity of the problem. In less complex cases, it is sufficient
to find the shortest path from the start node to the target node. In
general, however, this is not sufficient; the robot must learn that it may
be necessary to visit a specific node in the graph to reach the target
node successfully or even that it may have to pass through a certain
node more than once. Consider, for example, the previously mentioned

Fig. 2. The proposed hierarchical scheme for learning contact policies represented with
graphs.

gear shifting case, addressed in detail in Section 4.3. The robot must not
shift from the first gear directly to the fifth, which would be the shortest
path in the graph, but must learn to shift continuously from a lower
gear to a higher gear. To address such tasks, we chose reinforcement
learning (RL) to guide the search at the highest hierarchical level.
In some cases, however, it makes sense to use computationally more
efficient graph search algorithms [26].

3.2. Lowest level: Constraint-space following controller

The detailed presentation of our hierarchical scheme starts from
the bottom up by introducing the Constraint-Space Following (CSF)
controller, which is used to move the robot’s end-effector along the
environmental constraints. At the lowest level, the controller is given
a direction (selected by the algorithm at the highest level described in
Section 3.4) in which the robot can start exploring the environment
from the current node (state). Here the focus is on how to control the
robot motion in the selected direction while exploring whether motion
in any other direction is possible, which indicates the existence of the
next node in the graph.

For this purpose, we developed an impedance controller that is stiff
in the current direction of movement and compliant in the orthogonal
directions. A similar approach was proposed in [22,27], where they
introduced the concept of Compliant frame and Task frame. In our
framework, we formalize this motion control by utilizing the Frenet–
Serret (FS) frame [28,29], which is attached to the robot tool center
point (TCP). A sequence of FS frames is illustrated in Fig. 3. An FS frame
at position 𝒕𝑝 is defined by a rotation matrix 𝐑𝑝 with the first column
aligned with the tangential direction of motion, i.e. �̇�, and the other two
columns orthogonal to it. They are referred to as normal and binormal
vectors. 𝐑𝑝 and the corresponding coordinate axes can be computed as
follows

𝐑𝑝 =
[
𝒕𝑝 𝒏𝑝 𝒃𝑝

]
, (1)

𝒕𝑝 =
�̇�

‖�̇�‖ , 𝒃𝑝 =
�̇� × �̈�

‖�̇� × �̈�‖ , 𝒏𝑝 = 𝒃𝑝 × 𝒕𝑝,

where 𝒑 ∈ R3 are the measured robot TCP positions. For the rotational
part of motion, the FS frame is defined as

𝐑𝑜 =
[
𝒕𝑜 𝒏𝑜 𝒃𝑜

]
, (2)

𝒕𝑜 =
𝝎

‖𝝎‖ , 𝒃𝑜 =
𝝎 × �̇�

‖𝝎 × �̇�‖ , 𝒏𝑜 = 𝒃𝑜 × 𝒕𝑜,

where 𝝎 = 2�̄� ∗ �̇� is the angular velocity. Here �̄� denotes the conjugate
quaternion and we exploit the fact that the product of a conjugate of
unit quaternion with its own derivative results in a quaternion with
zero scalar part, which can be interpreted as a vector.
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Fig. 3. Frenet–Serret frames 𝐑𝑝(𝑡𝑘) for the positional path. The tangential direction is
in red, the normal in green, and the binormal in blue.

The above equations require accelerations, which are usually low
and therefore very noisy during operations like assembly and disassem-
bly. Different measures were proposed to provide for a robust FS frame
estimation, such as using Kalman filtering [30], Bishop frames [31],
and an optimization-based calculation [32]. All these methods require
knowledge of the entire trajectory before processing and thus cannot
be used for a real-time FS frame calculation, as it is required by our
approach. On the other hand, our policy learning algorithm requires a
controller stiff in the tangential direction of motion and compliant in
the normal and binormal direction of the corresponding FS frame. In
most practical cases it is best to assume equal compliance in the normal
and binormal direction. In such cases (see the lemma in the Appendix),
the robot control torques are independent of the direction of the normal
and binormal vector. Hence, given the tangential direction, the other
two columns of the coordinate frame can be selected arbitrarily in the
plane orthogonal to the tangential direction of motion. In our approach,
we take the second and third columns of the coordinate frame from
the previous sample and then apply a Gram–Schmidt orthogonalization
procedure to obtain an orthonormal basis for the current coordinate
frame. We call the resulting coordinate frames modified FS frames. The
initial modified FS frame is computed with an arbitrary selection of
vectors 𝒏 and 𝒃 that are further orthogonalized.

The remaining concern is how to estimate the tangential direction
of motion in a robust way. Niemeyer and Slotine [33] proposed a
spatial filter, which does not affect the normalization of the velocity
vector. The spatial filter extended for the rotational movement was used
for the tangent estimation in our previous research [6,7]. However,
since the spatial filter is a first-order filter, it introduced a lag. In
our experiments, it turned out that the main problem for tangent
estimation is not the sensor noise but the compliance of the tool and
the tolerances of the environment, which allow small motions in other
directions, although the robot’s motion is primarily constrained to
only one direction. Therefore we applied a filter with a variable rate,
inspired by the approach proposed in [34]. For the positional part of
the motion, the tangent is estimated using

𝒕𝑝(𝑡𝑘) =

⎧⎪⎪⎨⎪⎪⎩

𝒑(𝑡𝑘) − 𝒑(𝑡𝑘−𝑤)
‖𝒑(𝑡𝑘) − 𝒑(𝑡𝑘−𝑤)‖ , 𝛿𝑝(𝑡𝑘−1) ≤ 𝜖𝑝

𝒑(𝑡𝑘) − 𝒑(𝑡𝑘−1)
‖𝒑(𝑡𝑘) − 𝒑(𝑡𝑘−1)‖ , otherwise

, (3)

where 𝑡𝑘 is the current time, 𝑤 a suitably chosen delay factor that
determines the smoothing of the digital filter, 𝛿𝑝(𝑡𝑘−1) is the distance
between the line [𝒑(𝑡𝑘),𝒑(𝑡𝑘−𝑤)] and position 𝒑(𝑡𝑘−1), and 𝜖𝑝 a constant
that determines the switching between the filtered and non-filtered
estimation of the tangent. To prevent filter chattering, a small hysteresis
is usually applied to 𝜖𝑝. The filtering of sampled points 𝒑(𝑡𝑘) is illus-
trated in Fig. 4. For a rotational motion represented by a quaternion
trajectory, the filter takes the form

𝒕𝑜(𝑡𝑘) =

⎧
⎪⎪⎨⎪⎪⎩

2 log(𝒒(𝑡𝑘) ∗ �̄�(𝑡𝑘−𝑤))
‖2 log(𝒒(𝑡𝑘) ∗ �̄�(𝑡𝑘−𝑤))‖ , 𝛿𝑜(𝑡𝑘−1) ≤ 𝜖𝑞

2 log(𝒒(𝑡𝑘) ∗ �̄�(𝑡𝑘−1))
‖2 log(𝒒(𝑡𝑘) ∗ �̄�(𝑡𝑘−1))‖ , otherwise

, (4)

Fig. 4. Tangent estimation with the proposed variable rate filter. Solid dots represent
the measured robot positions. The dotted line shows the candidate tangent at time 𝑡𝑘+2
that was discarded because it does not meet the condition 𝛿(𝑡𝑘+2) ≤ 𝜖𝑝.

where log is the quaternion logarithm.
Given the FS frame, we need a control law that enables the appli-

cation of arbitrary compliance along the FS frame axes. Our approach
is based on the passivity-based variant of impedance control for ma-
nipulators with flexible joints [35]. We implemented a modification to
set the compliance along the Cartesian space trajectory with FS frames
attached. The commanded torque 𝝆𝒄 ∈ R𝑁 , which is passed to the robot
motors, is calculated as

𝝆𝒄 = 𝐁𝐁−1
𝛩 𝒖 + (𝐈 − 𝐁𝐁−1

𝛩 )𝝆, (5)

𝒖 = 𝐉T(𝜽)
([

𝒇𝑐
𝒎𝑐

]
+
[
𝒇𝑠
𝒎𝑠

])
+ 𝐠(𝜽) + 𝐍(𝜽)�̇�0, (6)

where 𝑁 is the number of robot joints, 𝜽 ∈ R𝑁 is the vector of joint
angles computed from the motor angles 𝛩 ∈ R𝑁 [35], 𝐉 ∈ R𝑁×6 is
the manipulator Jacobian, while 𝐁, 𝐁𝛩 ∈ R6×6 denote the positive
definite diagonal matrices of the actual and the desired joint inertia,
respectively. The aim of the term 𝐁𝐁−1

𝛩 is to reduce the joint inertia.
𝝆 is the vector consisting of the measured joint torques and 𝐠(𝜽) is
the gravity vector [36]. To control the configuration of the robot, a
nullspace term is added [37], where 𝐍(𝜽) = 𝐈−𝐉T(𝜽)𝐉+𝑇 (𝜽) ∈ R𝑛×𝑛 is the
null space projection operator, 𝐉+(𝜽) denotes Moore–Penrose pseudo-
inverse of the Jacobian and �̇�0 ∈ R𝑛 is the null space joint torque vector.
𝒇𝑠 and 𝒎𝑠 are additional forces and torque vectors in task coordinates,
which are used for searching for a feasible motion direction. The
selection of the probing forces 𝒇𝑠 and torques 𝒎𝑠 depends on a task. It
is discussed in Section 3.3 for planar maze learning and in Section 4 for
other tasks. The motor torque controller (5) reduces the motor inertia
and compensates for the robot’s non-linear dynamics, while Eq. (6)
provides for the desired impedance and damping, additional task force,
gravity compensation, and null space motion. The task command input
[𝒇T𝑐 ,𝒎

T
𝑐 ]

T is computed as

𝒇𝑐 = −𝐑𝑝𝐃𝑝𝐑T
𝑝 �̇� + 𝐑𝑝𝐊𝑝𝐑T

𝑝 𝒆𝑝, (7)

𝒎𝑐 = −𝐑𝑜𝐃𝑜𝐑T
𝑜𝝎 + 𝐑𝑜𝐊𝑜𝐑T

𝑜 𝒆𝑞 , (8)

where position and orientation tracking errors are defined as 𝒆𝑝 = 𝒑𝑑−𝒑
and 𝒆𝑜 = 2 log(𝒒 ∗ 𝒒𝑑 ). 𝐊𝑝 and 𝐊𝑜 ∈ R3×3 are the diagonal matrices
defining the positional and rotational stiffness along and around co-
ordinate axes, respectively. 𝐃𝑝 and 𝐃𝑜 ∈ R3×3 are diagonal damping
matrices, which are set as diagonal elements of the block diagonal
matrix1

𝐃 = 2

√
𝐁𝛩 +

[
𝐊𝑝 0
0 𝐊𝑜

]
. (9)

With the proposed approach, the robot is able to move along the
environmental boundaries while probing for possible movements in

1 In [35] the authors proposed double-diagonalization method to shape
the damping. However, the resulting damping matrix is not diagonal, as our
approach requires. Our experiments showed that the performance degradation
due to diagonal damping matrices was negligible.
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other directions, given that we apply high stiffness in the direction of
motion and low gains in the orthogonal directions.

3.3. Middle level: Graph topology determination

The CSF controller described above enables the robot to move
along the environmental constraints while applying probing wrenches
that indicate the possibility of moving in directions other than the
commanded tangential direction. The next task in our hierarchical
learning scheme is to determine when the robot has arrived to the
next node in the graph. When the robot arrives to the next node for
the first time, the newly identified node should be added to the graph.
In this section, we first define the representation of nodes and edges,
outline the criteria for node detection, and present the algorithm that
systematically explores the graph topology.

3.3.1. Representation of nodes and edges
Each node in the graph is characterized by the current robot pose

and possibly some previous poses that the robot has reached in the
nodes immediately preceding the current node. Such a sequence of
poses defines a state 𝑠𝑘 associated with the 𝑘-th node of the graph:

𝑠𝑘 = {𝒑𝑘, 𝒒𝑘,𝒑𝑘−1, 𝒒𝑘−1,… ,𝒑𝑘−𝜅 , 𝒒𝑘−𝜅}, (10)

where 𝒑𝑘 ∈ 𝐑3 is the position and 𝒒𝑘 ∈ R4 a unit quaternion represent-
ing the orientation. 0 ≤ 𝜅 < 𝑘, i.e. the number of poses in 𝑠𝑘, is chosen
so that 𝑠𝑘 satisfies the Markov decision property, i.e. each transition
is determined only by the current node and the action selected in
that node. To ensure the Markov decision property, it is sometimes
necessary to include previous poses in the state description, i.e. 𝜅 ≥ 1.
This effectively means that some parts of the graph are explored again,
since this results in the creation of new states (see Fig. 8). This way
it becomes possible to solve problems such as opening locked doors,
where some states only become reachable after a certain other state
has been visited. In practice, the parameter 𝜅 is chosen manually by
the user. In most of the experiments described in Section 4, 𝜅 was set
to 0.

The transition from one node to another defines an edge in the
graph. In the proposed system, a robot motion trajectory starting in one
and ending in another node is encoded with a speed-scaled Cartesian
space dynamic movement primitive (CDMP), which handles Cartesian
space policies [38] and non-uniform velocity scaling [39]. The benefit
of such encoding is twofold: it allows a compact, smooth, and scalable
representation of the learned policy, and it removes the explicit time
dependence of the trajectory. This enables the robot to slow down or
speed up the execution of the learned assembly policy if needed [39].
The CDMPs starting in 𝑘-th node are stored in a set (𝑠𝑘) = {𝑎𝑖𝑘}

𝑑
𝑖=0,

where 𝑑 is the degree of the node. The 𝑖-th CDMP in state 𝑠𝑘 is
represented as 𝑎𝑖𝑘:

𝑎𝑖𝑘 = {𝒘𝑖
𝑘 , 𝒈

𝑖
𝑘, 𝜏

𝑖
𝑘}, (11)

where 𝒘𝑖 are the CDMP weights, 𝒈𝑖 is the CDMP goal, and 𝜏𝑖 is the
temporal scaling factor of the CDMP. See [38] for more details.

3.3.2. Node discovery by examining each branch with different probing
wrenches

We explain our search algorithm on the example of the planar maze
learning problem, where there are at most two possible directions to
continue at each node, other than turning back (see the graphs in
Fig. 5). In the graph representation of such a maze, the maximum node
degree is 2.

In our previous paper [7] we proposed an algorithm that discovers
new graph nodes by probing for the possible crossings that indicate the
nodes in small steps. However, this approach is slow because the robot
must constantly stop to make probes with search wrenches in different
directions. In the approach proposed in this paper, the maze is explored

using a method inspired by the wall following algorithm [40]. In this
approach, each possible motion (branch in the graph) is examined twice
by adding a constant probing force in either the positive or negative
direction of the normal.2 Next, we compare the robot paths executed
during the two passes. If the path splits, we have found a new node
of degree 2. If there is no split but the robot cannot continue in the
same tangential direction, we have found the node of either degree 0
(where the robot can only turn back) or degree 1 (where the robot can
continue only by changing the type of motion). The robot continues
until it reaches the target node. To prevent the robot from entering a
loop, we check that the robot has not already visited the same segment
with the same probing force.

As explained above, the example shown in Fig. 5 treats maze
learning as a planar problem. Therefore we only applied probing forces
along the normal axis of the FS frame. An extension of the proposed
algorithm to the 3D case, rotational motion, or nodes of a higher degree
is straightforward. Depending on the problem, probing wrenches in
all relevant directions must be given as input to the node discovery
algorithm. For each additional probing wrench, additional searches
from the currently visited node are necessary, which increases the
search time. In a practical implementation, it is, therefore, advisable
to consider only those search directions that are really necessary. For
most problems, these can be defined by a user in advance. We provide
some examples in Section 4.

3.3.3. Exploring the entire graph
The approach described above explores the selected branch with all

possible probing forces. To ensure that the entire graph is explored, it is
necessary to examine each node 𝑠𝑘 and examine all possible directions
𝑑𝑖𝑘.

Initially, the problem description contains only the start node de-
fined by the initial robot pose. The motion can be initiated by moving
the robot in one of the four orthogonal directions aligned with the
coordinates of the maze.3 In the proposed system, this is characterized
as (𝑠𝑘) = {𝑑𝑖𝑘}

𝑛
𝑖=0, where 𝑑𝑖𝑘 denotes the possible directions to continue

the motion and 𝑛 is the maximum number of them. In the case of the
maze learning 𝑛 = 3. In all our experiments, the initial set of search
directions was the same for all nodes.

Starting from the first node, we search in all possible directions with
all probing wrenches [𝐟T𝑠 ,𝐦

T
𝑠 ]

T to find other nodes in the graph. If the
robot cannot move in the given direction, 𝑑𝑖𝑘 is removed from the set
𝑘(𝑠𝑘). The process repeats until all nodes have been fully examined.

At this stage, we can uniquely construct all edges 𝑎𝑖𝑘 in the graph
using the trajectories stored during the search process. The developed
procedure for the discovery of new nodes and edges is summarized in
Algorithm 1.

3.4. Highest level: Reinforcement learning

The algorithm at the highest level learns the optimal sequence of
movements from the start to the target node. Nodes and edges in the
graph-based representation of the task are closely related to the states
and actions in RL algorithms (see Section 3.3.1). In RL, an action
causes a transition from one state to another. In our graph-based task
representation, this corresponds to following the CDMP associated with
the chosen edge from the current node to the next node.

2 In the maze exploration literature, this type of search procedure is referred
to as the left-hand and right-hand rule.

3 As the robot is compliant, we can apply a suitable wrench at the robot’s tip
so that the robot attempts to move in the given direction. If the applied motor
command results in motion, we can continue the motion using the approach
described in Section 3.2. Note that due to robot compliance, the direction of
the applied force or torque does not need to be perfectly aligned with the
direction of the free motion.
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Fig. 5. Key steps in the search process to explore a planar maze. (a) The robot starts in node 1 and selects a direction to explore (down) after trying two other directions before.
It applies a positive force and continues until it reaches the target node (marked green). The route is marked with a black line. (b) The robot examines the same branch again with
a negative force. Doing so the robot must also turn back and discovers node 4. As the path diverges from the previous (blue dashed line), the algorithm discovers new nodes 3, 5
and 6. The edges between nodes 1 and 3, 4 and 5 and 6 and 2 have been explored with both probing forces and do not need to be examined anymore. (d) The robot continues
with the closest node with unexamined branches. It goes up in node 3 and applies a positive force, which leads to the discovery of further nodes and edges. The arrow emblems
indicate continuation directions (gray for unexamined, black for selected, blue for examined, and red for impossible).

Algorithm 1: Graph topology determination algorithm for 𝜅 =
0. The algorithm identifies all nodes and edges in the graph
by making sure that at every node, the robot searches in all
possible continuation directions with all probing wrenches. The
algorithm terminates when all nodes are fully examined.

Input: Initial robot pose, probing wrenches [𝐟T𝑠 ,𝐦
T
𝑠 ]

T, search
directions set {𝑑𝑖}𝑛𝑖=0

Output: Graph representation of the problem

1 initialize the graph with start node 𝑠1 at the initial robot pose, 𝐾 = 1
2 assign the possible search directions (𝑠1) = {𝑑𝑖}𝑛𝑖=0
3 while ∃𝑘 ≤ 𝐾 so that 𝑑𝑖 ∈ (𝑠𝑘) and not all probing wrenches have been

applied yet in direction 𝑑𝑖 do
4 select node 𝑠𝑘 closest to the start node that fulfills the above

condition
5 select a not yet fully examined direction 𝑑𝑖 ∈ (𝑠𝑘)
6 select probing wrench [𝐟T𝑠 ,𝐦

T
𝑠 ]

T that has not yet been applied
while examining the direction 𝑑𝑖

7 if motion in the selected direction possible then
8 while not in target node and not in loop do
9 apply probing wrench [𝐟T𝑠 ,𝐦

T
𝑠 ]

T while following the
environmental constraints (see Section 3.2)

10 record trajectory
11 if not reached existing node then
12 if motion cannot be continued in any other way but

turning back then
13 𝐾 = 𝐾 + 1, create node 𝑠𝐾 at the current robot

pose, (𝑠𝐾 ) = {𝑑𝑖}𝑛𝑖=0
14 if motion diverged from a path explored in one of the

previous iterations or rejoins an existing path then
15 𝐾 = 𝐾 + 1, create node 𝑠𝐾 at the current robot

pose, (𝑠𝐾 ) = {𝑑𝑖}𝑛𝑖=0

16 mark 𝑑𝑖 ∈ (𝑠𝑘) as examined with the selected probing
wrench

17 else
18 remove 𝑑𝑖 from (𝑠𝑘)

19 identify the graph edges associated with search directions 𝑑𝑖 ∈ (𝑠𝑘)
by analyzing the stored search trajectories

20 encode trajectories associated with the identified edges as CDMP 𝑎𝑖𝑘

In our approach, the selection of the next action to be explored is
guided by 𝜖-greedy strategy, which is defined as follows

𝜋(𝑠) =
⎧⎪⎨⎪⎩

argmax
𝑎

𝑄(𝑠, 𝑎), with probability 1 − 𝜖

random action, with probability 𝜖,
(12)

where parameter 𝜖 is the ratio between the exploration and exploita-
tion [41].

Since finding optimal paths in a graph is a finite horizon discrete
problem [42], we can apply any classical RL algorithm. In our ex-
periments, we used off-policy Q-learning [41]. We assign a positive
reward when the robot reaches the goal state. No intermediate rewards
are assigned before reaching the goal state. In every state 𝑠𝑘, the
action-value function (𝑠𝑘, 𝑎𝑘) is updated according to the Q-learning
algorithm

(𝑠𝑘, 𝑎𝑘) ← (𝑠𝑘, 𝑎𝑘) + 𝛼(𝑟𝑘 + 𝛾 max{𝑄(𝑠𝑘+1, 𝑎𝑘+1)} −(𝑠𝑘, 𝑎𝑘)), (13)

where 𝑠𝑘 is the 𝑘-th state, 𝑎𝑘 denotes the action taken in 𝑠𝑘, 𝑟𝑘 is the
reward obtained in state 𝑠𝑘, 0 < 𝛼 < 1 is the learning gain, and 0 < 𝛾 < 1
is the discount factor, which gives recent rewards higher importance.

The algorithm at the highest level returns a walk from the start node
to the end node, which defines the learned sequence of CDMPs.

The learned CDMPs can be further improved with various robot
policy refinement methods such as ILC [10].

4. Experimental evaluation

This section experimentally verifies the proposed hierarchical learn-
ing of contact policies. All experiments were performed with a seven-
degrees-of-freedom collaborative robot Franka Emika Panda. For this
purpose, we implemented the CSF controller using the libfranka library
and the ros_control framework in C++. The highest hierarchical level
with the Q-learning RL algorithm and the middle level with the graph
topology detection algorithm were implemented in Matlab and commu-
nicated with the CSF controller using ROS at 100 Hz. The Q learning
and CSF controller parameters were the same for all experiments. They
were set to 𝛼 = 0.9, 𝛾 = 0.92 and 𝜖 = 0.8. The delay factor 𝑤 used in
the filtering was chosen by trial and error to be 𝑤 = 5. The reward
assignment was also the same in all cases. When the robot reached
the desired state, we assigned a reward of 𝑟 = 20∕𝑘, where 𝑘 is the
number of steps in Eq. (13) to reach the desired state. The gain of
the CSF controller was set to 2000 N/m and 60 N/rd in the tangential
component and to zero in the normal and binormal of the FS frame.
The probing force and torque magnitudes 𝑓0 and 𝑚0 were set to 7 N and
0.1 N m, respectively. An anthropomorphic qb SoftHand [43] was used
in the door opening and gear shifting experiments. In the remaining
experiments, the original Panda’s two-finger gripper was used.

4.1. Maze learning

In the first experiment, we applied our approach to the maze
learning problem (see Fig. 6). We already studied maze learning in our
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Fig. 6. Panda robot during the maze learning process. The start and the goal states
are shown in yellow and green, respectively.

previous research [7], where we demonstrated the greatly improved ef-
ficiency of hierarchical learning compared to a single-level RL scheme.
In this research, we additionally improved the efficiency of learning,
because the proposed approach does not need to stop in small steps to
check for the existence of new nodes (see Section 3.3). To initiate the
graph search, we manually guided the robot to the start node, denoted
with 1 in Fig. 6. This was the starting point in all subsequent search
iterations. The normal direction of the modified FS frame was aligned
with the global 𝑧 axis, which is orthogonal to the maze. As the robot
motion during maze exploration is planar, the tangent to the robot
motion is guaranteed to lie in the plane defined by the maze. The third
orthogonal axis (binormal) can thus be easily computed as the vector
product of the tangent and the 𝑧 axis.

Once all branches are investigated, the algorithm cannot find new
nodes. The key stages of the search procedure are explained in Fig. 5.
The algorithm at the highest level has all the necessary information
and can continue learning without the robot having to perform the
movements in the maze. In the case of our maze, the CSF controller
at the lowest and the search algorithm at the middle level needed
three iterations to find all eight nodes, and two more to ensure no
further nodes exist. The Q-learning needed five or fewer episodes to
discover an optimal sequence of nodes on average. The convergence of
the Q-learning is shown in Fig. 7 left.

The selection of the algorithm for discovering new nodes does not
affect the learned policy. However, it affects how fast the robot moves
along the corridor during learning. The total learning time with the
proposed search strategy was approx. ten times shorter than in our
previous experiment [7]. This difference is not due to the greater or
lesser efficiency of the individual algorithm but rather due to the robot
movements generated by the individual algorithm. In the previous
algorithm, the robot advances in small steps as it searches for path
forks. In contrast, the new algorithm generates continuous paths where
branch points are sought by applying a force perpendicular to the
robot’s direction of motion. The video of the experiment is accessible
in supplementary materials as Maze Learning video.

We repeated the learning algorithm for a more complex case where
the maze exit is locked. To unlock it, the robot must first visit state
four. The Q-learning convergence for this example is shown in Fig. 7
right. Note also that an algorithm for finding the shortest path in
graphs at the highest hierarchical level could not solve this problem.
We considered this problem as many mechanisms require a specific
sequence of states to be visited before reaching the desired state. An
example from everyday life is a retractable ballpoint pen. Another
such example, door opening, where the doors are equipped with a
multi-point locking mechanism, is discussed next.

4.2. Door opening learning

In order to demonstrate the limitations of traditional graph algo-
rithms for searching the shortest path, an experiment was conducted in
which a door opening task was performed, as depicted in Fig. 8 left. The
results of this experiment reveal why not all nodes can be discovered
by these methods, as new nodes might become reachable only after
some others have been visited. The door was equipped with mechanical
locking for lever-handle-operated doors. To open the locked door, it
was first necessary to turn the hook up to unlock it before proceeding
with the ordinary door-opening procedure (see Fig. 8). The robot’s task
was to learn the policy for door opening autonomously. The door hook
pose was defined with kinesthetic teaching.

After the robot grabbed the hook, it generated forces and torques in
random directions. When a randomly selected force caused a motion,
it continued in that direction as described in the 3.2 section. This way,
it tested all possible combinations of actions and learned the optimal
sequence of movements to open the door, regardless of whether it was
unlocked or locked. Moreover, it autonomously learned a general policy
for opening unlocked and locked doors in approx. seven episodes. Due
to the limited workspace, the robot could not fully open the door.
Therefore, we assigned a positive reward when the door opening angle
exceeded 20 deg. The exploration algorithm autonomously discovered
the graph which describes the above learning process, presented in
Fig. 8. Since learning to open a door with multi-point locking is more
complex than a standard locking system and requires knowledge of
previous actions to fulfill the MDP property, the graph states were
determined with 𝜅 = 1 in Eq. (10). The learned policy starts in state
1 and continues visiting states denoted by 2 and 3, the final state
describing the door open state. If the door is locked, we set 𝜅 = 1
as explained in Section 3.3.1. The robot can initially not proceed to
state 6. Instead, it moves to states 3, 4, 5, 6, and 7 to unlock and
open the door. The algorithm finds all possible actions autonomously
and encodes them as DMPs in the set (𝑠𝑖). State 3 deserves attention
since the system applying action 1 remains in the same position B. This
way, the algorithm recognizes that the door is locked. Note again that
the state labeling depends on the initial robot motion and the initial
state of the door. However, state labeling does not affect the learned
policy. Fig. 8 right shows the case where the robot started to turn the
hook down on the initially unknown state (locked/unlocked) of the
doors. The convergence of the RL algorithm at the top of the proposed
hierarchical scheme, which learns the appropriate action sequences for
the door opening, is shown in Fig. 9. In this experiment, the Q-learning
algorithm (13) was enhanced with eligibility traces [41]. On average,
the algorithm took six episodes to learn the policy.

Previous research has often discussed learning to open doors, al-
lowing us to compare the effectiveness of these approaches. First, we
mention that none of the studies addressed the mechanical door-locking
mechanism and limited themselves to the problem of learning to open
a standard door. With our graph-based approach, we can immediately
notice that no decision is required when opening a standard door.
Consequently, the CSF controller can discover the required sequence
of moves in a single trial. In contrast, standard door opening learning
by PI2 algorithm required more than 300 trials to learn the policy [44].
In [45], authors investigate accelerated learning of door opening with
two robot agents. They learned the final policy across 20 consecutive
trials while learning with one agent was much slower. The approach
proposed in [6], which combines PI2 learning and compliant controller,
required 9 roll-outs on average. Another approach [46] proposed policy
learning in the simulated environment and application of learned policy
in a real environment. Learning in a simulated environment took ap-
prox 300 trials. Although compared approaches also perused additional
objectives, such as end-to-end learning, the comparison demonstrates
the efficiency of the proposed framework.

Learning to open doors and execution of the learned policy is shown
in the Door Opening video in the supplementary materials.
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Fig. 7. Convergence of the RL for maze learning shows learning cost vs. episodes. Learning cost is the path length for escaping the maze. The shaded region denotes a 70%
confidence interval of 20 epochs of learning.

Fig. 8. Different stages of door opening are shown in scheme (a). If the door is locked, it is first necessary to unlock the mechanism by going to position D before proceeding
with the ordinary opening procedure (going from A through B in position C). The graph in subfigure (b) corresponds to the situation when the locking mechanism is disabled.
The graph shows that no learning is required at the top level of the hierarchy in this case. The graph in subfigure (c) shows the resulting graph from an episode of the learning
procedure when the door is initially locked. Note that multiple nodes are created as the nodes also contain information about the previously visited nodes. The action labels
describe the semantic meaning of the action: 1 - pushing down, 2 - pushing up, and 3 - pulling the hook.

Fig. 9. Convergence of the RL for door opening learning shows learning cost vs. episodes. The cost is the number of states the robot visits before opening the door. Due to the
different costs for opening unlocked and locked doors, the learning convergence is shown in two plots for unlocked and locked doors, respectively. Note also that the aim is to
learn the general policy regardless of whether the doors are locked or unlocked. However, if we knew the door’s state in advance, the cost of opening the locked door would be
4. During the learning, the algorithm occasionally finds this policy but rejects it as it does not fit the general case of the unknown door’s state.

4.3. Learning to shift car gears

In this experiment, the robot autonomously learns to shift manual
car gear transmissions (See Fig. 10). The goal was to learn how to
shift from the neutral position to gears 1, 2, 3, 4, and 5 and from the
neutral position to the reverse gear. First, we show the robot how to
grip the gear lever with kinesthetic guidance. As the initial pose for
learning, we chose third gear, but any other position could be chosen.
The robot autonomously tests all possible ways to move the gear lever

in all Cartesian axes. We instructed the robot not to test the gear lever
orientations. Therefore, the robot was all the time compliant in all
orientational d.o.f. The semantic mapping between the robot pose and
the gear numbers is given in advance. The goal was to learn the policies
of how to shift into any gear from any position.

Learning began with exploiting additional force in the positive
normal axis of the FS frame. The resulting robot trajectory is denoted
with red in Fig. 10(d) Given that choice, the search algorithm labeled
states as shown in Fig. 10(b). Note again that a new node is added
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Fig. 10. (a) Standard gear lever. (b) Graph with states during the learning to shift manual transmission, as discovered and labeled by the search algorithm. Circles in two different
colors represent states that can be considered target states, depending on the task requirements. (c) Robot shifts a mockup manual transmission. (d) The trajectory discovered with
additional force in the normal direction and search force in the binormal direction of the FS frame are denoted with red and blue, respectively.

Fig. 11. Convergence of the RL for gear shifting learning shows learning cost (i.e. number of states visited) vs. episodes for two shifting sequences.

whenever the robot has to search in a completely new direction and
whenever there are multiple ways to continue the motion. We set the
fifth gear as a target node. Search with additional force in a negative
normal direction did not discover any new nodes. Next, we repeated
the search with an additional force in the negative binormal direction.
The binormal axis of the FS frame in this experiment almost always
coincides with the global 𝑧 coordinate. The robot found new nodes this
time and ended in the reverse gear. The resulting robot trajectory is
denoted with blue in Fig. 10(d). After the robot discovered all possible
nodes, it also learned how to shift from the neutral to the first, second,
fourth, and fifth gear. The exception is shifting from the second to the
third gear and from the third to the fourth gear because the robot
did not encounter this combination while discovering new nodes. Q
learning at the top of the hierarchical scheme was assigned to discover
two missing aforementioned policies. The algorithm learns them in 6
to 7 cycles, as shown in Fig. 11.

A demonstration can be found in the Gear Shift video in the supple-
mentary materials.

4.4. Car licence plate light disassembly and assembly

With this experiment, we intended to show how to learn the assem-
bly/disassembly of an object which consists of multiple parts, such as
a car license plate light. It consists of a base part with the bulb case,
bayonet bulb, and transparent cover. The base of the light is firmly
attached to the base plate, as shown in Fig. 12 left and center. Again,
we start the disassembly process with a manual guide to the suitably
chosen pose, where the robot gripper can firmly grasp the cover of the
light. The cover is attached to the base with two side pins. To release
them, it is necessary to apply a force in the 𝑧 direction and a torque
around the 𝑦 axis. The CSF controller finds the appropriate direction
by exploration as described in Section 3.2. The corresponding graph is

trivial in this case. For the bayonet bulb disassembly, the actions are
more complex, as it is necessary to push the bulb down in 𝑧 axis, rotate
it around 𝑧 axis, and pull it in 𝑧 axis. At this stage, it is also possible to
push the bulb in the 𝑧 axis, but in this case, the robot arrives at a node
of degree 0 and has to turn back. The corresponding graph is shown in
Fig. 12 right. Note that this graph differs from the others presented in
this work as it also includes actions demonstrated by a human. State
1 describes the manual guidance of the robot to the light cover. State
4, on the other hand, describes the actions where the human operator
guides the robot to the place where he releases the cover and, after that,
to the place where he grabs the light bulb. The robot could also perform
these actions autonomously using robotic vision. However, this was not
the subject of our research. The role of RL at the highest hierarchical
level, in this case, is minor since the graph has a single decision state,
and the learning algorithm finds the final solution in two steps in the
worst-case scenario.

During disassembly, the applied forces and torques inherently align
the bulb to slide along the casing, as the center of compliance is in the
robot gripper. During assembly, however, the situation is reversed, and
it is necessary to actively control the bulb orientation to align it with
the casing. In robotics, this is the well-known PiH problem, where it
is necessary to obtain the remote center of compliance using an ap-
propriate force control strategy [47] or apply additional learning [19].
This is also one of the reasons why the disassembly is easier than the
corresponding assembly. This makes it easier to learn the assembly
semantics through disassembly easier, as already suggested in [7]. The
robot generates the corresponding force and torque with an impedance
controller by applying a displacement in 𝑧 coordinate and a rotation
around the 𝑧 coordinate. This experiment is also demonstrated with the
corresponding Licence Plate video in the supplementary materials.
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Fig. 12. Panda robot during the license car plate light disassembly and assembly. (a) removal of the transparent cover. (b) disassembly of the bayonet bulb. (c) disassembly graph.
The states in violet color represent human demonstration.

5. Conclusion

Autonomous learning of robotic tasks in close contact with the
environment is one of the still open challenges in modern robotics.
This paper presents a novel approach based on a task representation
with directed graphs. Based on this formulation, we propose a three-
level hierarchical learning scheme to solve the learning problem. The
highest hierarchical level makes decisions based on exploratory move-
ments generated by the newly developed CSF controller at the lowest
level. The distinguishing feature of the CSF controller is that it allows
the specification of variable compliance along the robot motion. The
middle level is dedicated to the discovery of new nodes and edges
in the task graph. The main advantage of the hierarchical scheme is
accelerated learning, which requires only a few learning roll-outs for
typical tasks encountered in everyday life and industrial plants. Another
advantage is that it generates continuous-time control policies using
classical discrete-time RL methods such as Q-learning or SARSA.

We also considered the possibility of using alternative algorithms
to find the optimal sequence of transitions at the highest hierarchical
level of the proposed framework. Some problems can be successfully
solved by finding the shortest paths between the nodes in a graph.
These methods are generally faster than RL algorithms but less general.
For example, learning to assemble a car license plate light, gear shifting,
and the first maze learning problem could also be solved using graph
exploration methods (breadth-first search or depth-first search) and
Dijkstra’s algorithm [48]. On the other hand, graph searching with RL
can solve more complex problems where finding the shortest paths
in the graph fails. Two of them were considered in our research,
i.e., opening the door equipped with a lever-handle-locking mechanism
and the second example of maze learning. A truly autonomous robot
should be able to solve various problems regardless of their complexity.
Thus RL is a more reasonable choice for finding the optimal path
through the graph in our hierarchical scheme.

Our framework for autonomous learning of contact policies was
verified in four experiments. In the first experiment, we chose the well-
known maze learning problem because it nicely illustrates the essence
of our approach based on directed graphs and algorithms for finding
paths through such graphs. Next, we performed two experiments from
everyday life: opening the door and shifting the car gearbox. Finally,
we provide an example of learning assembly tasks by autonomous
disassembly.

Our experiments focused on tasks where movement is allowed in a
single, constantly changing direction. There are many such tasks in our
daily lives and in industrial production processes. In addition to the
discussed and numerous other assembly and disassembly tasks, there
are tasks such as screwing, connecting BNC connectors, handling valves

and levers, opening drawers and cabinets, etc. The proposed approach
is directly applicable to such tasks. Moreover, it can be extended to
tasks that allow movement in several degrees of freedom, which will
be the subject of our future research.
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Appendix A

Lemma 1. Let the robot be controlled using impedance control law defined
by Eqs. (5)–(8), with diagonal stiffness and damping matrices specified in
Frenet–Serret (FS) coordinate frames (1) distributed along the robot path. If
we choose equal stiffness and damping constants in the normal and binormal
direction of motion, then the commanded torque (5) and thus the robot
motion is independent of the direction of the normal and binormal vector
that defines the FS frame.

Proof. As a first step, let us recall that the control accelerations are
computed according to Eq. (7). Assuming that stiffness and damping
in the directions orthogonal to the tangential direction are equal,
i.e., 𝑘𝑦𝑧 = 𝑘𝑦 = 𝑘𝑧, 𝑑𝑦𝑧 = 𝑑𝑦 = 𝑑𝑧, we have

𝐊𝑝 =
⎡⎢⎢⎣

𝑘𝑥 0 0
0 𝑘𝑦𝑧 0
0 0 𝑘𝑦𝑧

⎤⎥⎥⎦
, 𝐃𝑝 =

⎡⎢⎢⎣

𝑑𝑥 0 0
0 𝑑𝑦𝑧 0
0 0 𝑑𝑦𝑧

⎤⎥⎥⎦
. (14)

Page 41 of 77



Robotics and Computer-Integrated Manufacturing 86 (2024) 102657

11

M. Simonič et al.

Next we rewrite Eq. (7) with the above stiffness and damping matrices

�̈�𝑐 =
[
𝒕 𝒏 𝒃

] ⎡⎢⎢⎣

𝑘𝑥 0 0
0 𝑘𝑦𝑧 0
0 0 𝑘𝑦𝑧

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝒕T
𝒏T
𝒃T

⎤
⎥⎥⎦
𝒆𝑝

+
[
𝒕 𝒏 𝒃

] ⎡⎢⎢⎣

𝑑𝑥 0 0
0 𝑑𝑦𝑧 0
0 0 𝑑𝑦𝑧

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝒕T
𝒏T
𝒃T

⎤
⎥⎥⎦
�̇�

= (𝑘𝑥𝒕𝒕T + 𝑘𝑦𝑧(𝒏𝒏T + 𝒃𝒃T))𝒆𝑝 + (𝑑𝑥𝒕𝒕T + 𝑑𝑦𝑧(𝒏𝒏T + 𝒃𝒃T))�̇�. (15)

Let us now define another coordinate frame 𝐑′
𝑝 =

[
𝒕′ 𝒏′ 𝒃′

]
, with

the first column defined by the tangent of robot motion, i.e., 𝒕′ = 𝒕, but
with the other two orthogonal axes 𝒏′ and 𝒃′ chosen arbitrarily. If the
diagonal stiffness and damping matrices (14) are defined in this frame
and with equal stiffness and damping in the direction of 𝒏′ and 𝒃′, then
the corresponding control acceleration (7) in the robot base coordinate
frame is given by

�̈�′𝑐 = (𝑘𝑥𝒕𝒕T + 𝑘𝑥𝑦(𝒏′𝒏′
T + 𝒃′𝒃′T))𝒆𝑝 + (𝑑𝑥𝒕𝒕T + 𝑑𝑦𝑧(𝒏′𝒏′

T + 𝒃′𝒃′T))�̇�. (16)

For any rotational matrix 𝐑 it holds 𝐑𝐑T = 𝐈, hence

𝐈 = 𝒕𝒕T + 𝒏𝒏T + 𝒃𝒃T = 𝒕𝒕T + 𝒏′𝒏′T + 𝒃′𝒃′T. (17)

As the tangential components are equal in the above equation, it follows
that 𝒏𝒏T + 𝒃𝒃T = 𝒏′𝒏′T + 𝒃′𝒃′T, hence �̈�𝑐 = �̈�′𝑐 . In the same way,
we can prove that also for the commanded angular velocities (8) the
relation �̇�𝑐 = �̇�′

𝑐 holds. Thus under the assumptions of the lemma, the
commanded torque (5) is independent of the direction of normal and
binormal vectors that defines the FS frame. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.rcim.2023.102657.
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Robust Execution of Assembly Policies Using a Pose Invariant Task
Representation

Bojan Nemec1, Matevž Majcen Hrovat1, Mihael Simonič1, Suhan Shetty2, Sylvain Calinon2, and Aleš Ude1

Abstract— This paper discusses the robustness of executing
robot tasks in contact with the environment. For example, in
assembly, even the slightest error in the initial pose of the
assembled object or grasp uncertainties can lead to large contact
forces and, consequently, failure of the assembly operation.
Force control can help to improve the robustness only to a
certain extent. In this work, we propose using the position and
orientation invariant task representation to increase the robust-
ness of assembly and other tasks in continuous contact with the
environment. We developed a variable compliance controller
which constantly adapts the policy to environmental changes,
such as positional and rotational displacements and deviations
in the geometry of the assembled part. In addition, we combined
ergodic control and vision processing to improve the detection
of the assembled object’s initial pose. The proposed framework
has been experimentally validated in two challenging tasks; The
first example is a mock-up of an assembly operation, where the
object moves along a rigid wire, and the second is the insertion
of a car light bayonet bulb into the housing.

I. INTRODUCTION

Assembly is one of the most common tasks in industrial
robotics. However, assembly operations are not necessary
only in industrial environments but also in our homes, as
many of the daily tasks we perform are assembly tasks.
One of the problems in assembly is accurate calibration.
Consider, for example, the peg-in-a-hole (PiH) task depicted
in Fig 1. Even the smallest errors in the orientation of
the assembled object can result in large positional errors
and, consequently, large forces during the assembly using a
predefined assembly sequence. In automated robot assembly,
complex calibration procedures and specialized hardware are
usually applied to determine the position and orientation of
workpieces. On the contrary, this is often hard to achieve in
a domestic environment. The same applies to small series
and craft production. Therefore, developing procedures that
automatically adapt assembly tasks to environmental changes
is one of the main challenges for the faster introduction of
robotics in our homes and small-scale production [1].

This problem is not new and has been under investigation
since the beginning of robotics. Early approaches tend to
solve the problem by force control [2]. However, force
control is often slow in adaptation and can become unstable,
especially in admittance-based control schemes. Therefore,

1 The authors are with the Humanoid & Cognitive Robotics Lab,
Department of Automatics, Biocybernetics and Robotics, Jožef Stefan
Institute, Ljubljana, Slovenia, email: bojan.nemec@ijs.si,
matevz.majcen@ijs.si, mihael.simonic@ijs.si,
ales.ude@ijs.si.
2 The authors are with the Idiap Research Institute, Mar-
tigny, Switzerland, email: suhan.shetty@idiap.ch,
sylvain.calinon@idiap.ch.

force control is often combined with various learning pro-
cedures that can effectively eliminate the stability problems
but are unsuccessful with stochastic error sources [3], [4],
[5]. One of the most successful approaches turned out to
be compliant control, which can naturally adapt to small
environmental deviations [6].

Alternatively, one can exploit the arising contact forces and
torques to create more robust assembly policies. Based on
this paradigm, we aim to develop an algorithm that can adapt
to larger deviations in object position where compliance and
force control become unsuccessful. The basic idea of our
approach is that while adapting to the environment, the robot
also updates the task according to the current position and
orientation. To adapt to the environment in real-time, we
use two techniques: firstly, the task formulation using a pose
invariant description and, secondly, the execution of the task
with a controller, which inherently adapts to the variable
environmental constraints. We have developed a new position
and orientation invariant trajectories method, distinguished
by its compact form and computational robustness. They
are specially adapted to describe assembly operations. The
proposed approach allows us to avoid lengthy and demanding
calibration procedures usually required in robotic assembly.

Fig. 1. The solid and the dashed outline show the real and the estimated
cylinder, which is subject to peg-in-hole operation. Arrows show the
corresponding true and estimated insertion trajectories.

However, the proposed framework requires at least a
coarse knowledge of the robot’s initial pose when assem-
bling. To this end, we propose a multimodal approach that
combines robotic vision and measured contact forces. The
appropriate initial pose is then explored with an ergodic
controller.

This paper consists of five sections. In Section II we
introduce an incremental policy representation for assembly
tasks based on position and orientation invariant descriptors.
Next, in Section III, we introduce Adaptive Impedance Con-
troller (AIC) as a basic enabler of our approach. It enables
following the desired policy and adaptation to the unknown
and variable environmental constraints. The search for the
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initial assembly pose, which combines vision processing and
ergodic control, is explained in Section IV. Experimental
evaluation in Section V considers the validation using a
mockup, which comprises all assembly challenges consid-
ered in our approach, and, finally, the challenging task of
bayonet bulb insertion. A short discussion and conclusions
are provided in Section VI.

II. DESCRIBING CONTACT POLICY USING
POSE-INVARIANT TRAJECTORY NOTATION

Our approach aims to encode the task incrementally, i.e., at
any time, we specify the motion relative to the robot’s current
pose. The incremental task formulation is provided using a
task description where the position and orientation of the
resulting motion trajectory depend only on the initial pose
of the task. We refer to this formulation as pose invariant
task definition. This section proposes a novel approach
for formulating invariant trajectories applicable to assembly
tasks.

Different formulations have been developed for a position
and orientation invariant task description [7], [8]. They are
mainly used to recognize and understand human intentions
and actions in collaborative robotics. Some approaches aim to
compute invariant motion trajectories directly from the video
stream [9]. Others apply invariant geometrical properties
derived from the definition of curvature and torsion [8], [10]
and Frenet-Serret frames [11]. However, most approaches
based on differential geometrical properties suffer from the
limitations that they can only be applied to non-degenerate
trajectories. Roughly speaking, these are trajectories in which
the curvature is different from zero everywhere. As straight-
line motions are common in robot assembly, many assembly
trajectories are degenerate in this sense.

Our approach differs from all previously presented ones in
that it does not deal with the general 6-dimensional motion
of a rigid body. We consider tasks that allow only partial
positional and orientation freedom of motion. The border
between the region where the robot motion is constrained
by the environment and the region where motion is free
is called a C-surface [12]. The motion is possible along
the tangential direction of the C-surface and is constrained
in orthogonal directions. The dimension of the C-surface
determines the number of degrees of freedom of robot motion
in contact with the environment. A typical assembly task
is characterized by an at most two-dimensional C-surface.
Take, for example, a round peg in a hole problem, where the
hole is aligned with the x axis of the robot. Here, only two
coordinates are freely definable, x and the rotation around
x axis. Orientation often changes with position, such as
when screwing or assembling a BNC connector. Tasks can
be composed as a sequence of such movements, such as
inserting a bayonet bulb, composed of a translation followed
by a rotation. In such tasks, a maximum of two degrees of
freedom change simultaneously, one translational and one
rotational. On the other hand, during the execution of the
task, the robot follows environmental constraints. The robot

can follow them more accurately with prior knowledge of
these constraints.

For this reason, we have chosen a four-dimensional task
formulation. This formulation can describe most assembly
operations and operations where the robot is in physical
contact with the environment. In our approach, these degrees
of freedom are aligned with the x-axis of the local coordinate
system, named the object coordinate system. This way, one
can describe the motion as sliding a ring on a rigid wire, as
shown in Fig. 2. This problem comprises all assembly cases
considered in our research.

Fig. 2. A movement of a ring on a rigid wire. The coordinate system
attached to the ring is referred to as the object coordinate system.

Consider that a trajectory of an object (in our case, sliding
a ring on a rigid wire) can be represented by a series
of trajectory points, which are obtained as a sequence of
homogeneous transformation matrices applied to an initial
transformation matrix. Each point on the trajectory is char-
acterized as:

T(k) = T(0)∆T(1) · · ·∆T(k) = T(0)
k∏

i=1

∆T(i), (1)

where the homogeneous transformation matrices are calcu-
lated as

T (0) =



R(0)



x(0)

y(0)

z(0)




0 1


 (2)

and

∆T (i) =




∆R(i)




∆x(i)

0

0




0 1


 (3)

=



RT (i-1)R(i)



x(i)-x(i-1)

0

0




0 1




The trajectory is thus parameterized with the local coordinate
system R(k) and the displacement in the direction of the x
axis of R(k). Variable k denotes discrete time. It is related
to the continuous time by t = k∆t, ∆t being the sampling
interval. The main advantage of using the above formulation
is an incremental computation of the policy, which enables
adaptation to environmental changes. The next trajectory

Page 46 of 77



sample depends only on the previous, as can be seen from
the relation

T(k) = T(k-1)∆T(k). (4)

This notation, however, is highly redundant, as it requires
10 variables to describe a 4 d.o.f motion. A more compact
representation can be achieved by utilizing the following
transformations

∆x(k) = ν(k)∆t (5)
∆R(k) = exp(ω(k)∆t) (6)

where the exponential mapping (exp : R3 7→ S3,∀ω ∈ R3,
∥ω∥ < 2π), which gives the rotation matrix, obtained using
the Rodrigues formula

exp(ω∆t) = I+sin(∥ω∥∆t)
[ω]×
∥ω∥ +(1−cos(∥ω∥∆t)

[ω]2×
∥ω∥2 , (7)

where [ω]× denotes a skew-symmetric matrix composed of
elements of vector ω. Scalar ν(k) and vector ω(k) constitute
a unique differential time-based description of a space curve
describing the assembled object position and orientation.
Moreover, the spatial position and orientation of the curve
depends only on the initial pose, given by T(0). For this
reason, we call this formulation a pose-invariant notation of
motion.

A more compact representation can be obtained using unit
quaternions. The desired pose passed to the robot controller
is often given with a generalized vector in a form

χ(k) =
[
pT (k) q(k)

]
(8)

where p ∈ R3 is the position vector composed of spatial
coordinates x, y and z, while q ∈ R4 is a unit quaternion,
describing object orientation. We use the notation q =
v + u, where v and u are the scalar and vector part of the
quaternion. The Eq. (4) can be represented in a form

χ(k)=
[
p(k-1)+ν(k)∆t∆q(k) ∗ [0+[1 0 0]T ] ∗∆q(k),

∆q(k) ∗ q(k-1)
]

(9)

Operator (.) stands for a conjugate quaternion. Applying the
well-known relation

∆q(k) = exp(ω(k)∆t) (10)

we obtain

χ(k)=
[
p(k-1)+ν(k)∆t exp(ω(k)∆t) ∗ [0+[1 0 0]T ] ∗

exp (ω(k)∆t(k)), exp(ω(k)∆t) ∗ q(k-1)
]
. (11)

For quaternions, the exponential map is defined as

exp(ω) =





cos (∥ω∥) + sin (∥ω∥) ω

∥ω∥ , ω ̸= 0

1+[0, 0, 0]T , otherwise

(12)

The new trajectory sample depends only on the previous
generalized vector χ(k − 1) and four properties, calculated
from ν(k) and ω(k), that are pose invariant. In the remainder
of the text we refer to them as invariances.

A. Learning of pose-invariant trajectory representation

Unlike other invariant trajectory representations, which
allow describing unconstrained 6 d.o.f motion, calculating
invariances is straightforward. Moreover, the solution always
exists, and it is unique. From a set of sampled trajectory
tuples [p(k) q(k)], k = 1 · · ·T , translational and angular
velocities of the object frame are calculated as

ν(k) = ∥p(k)− p(k − 1)∥/∆t (13)
ω(k) = 2 log(q(k) ∗ q(k − 1))/∆t (14)

The quaternion logarithm log : S3 7→ R3, that maps the
quaternion q to the angular velocity ωωω , is defined as

log(q) = log(v,u) =





arccos(v)
u

∥u∥ , u ̸= 0

[0, 0, 0]T, otherwise

(15)

Next, we define a path variable s as a weighted arc length

s(t) =

∫ tmax

0

(ν(t) + γ∥ω(t)∥)dt. (16)

Scalar γ compensates for the different translational and
rotational motion metrics. For the discrete-time, it turns to

s(k) =

T∑

1

∥p(k)−p(k-1)∥+2γ∥ log(q(k)∗q(k-1))∥, (17)

tmax = T∆t. Using s(k) as a phase variable, we encode
ν(k) and ω(k) with a sum of M Gaussian radial base
functions Ψ in the form

ν̂(s) = x(s)wν , (18)
ω̂(s) = X(s)Wω (19)

x(s) =
[Ψ1(s), . . . ,ΨN (s)]
∑N

j=1 Ψj(s)
, (20)

X(s) =



x(s)

x(s)

x(s)


 (21)

Ψj(s) = exp
(
−hj (s− cj)

2
)
, j = 1, . . . ,M. (22)

The vector wν ∈ RM and matrices Wω ∈ R3×M contain
free parameters that determine the shape of the encoded
variables ν̂(s) and ω̂(s), cj are the centers of RBFs and
hj their widths. Usually, they are selected so that RBFs
are evenly distributed along the trajectory. RBF weights are
learned after the trajectory demonstration by regression [13].

B. Reconstruction of robot policy from pose-invariant trajec-
tory representation

Invariant representations are very suitable for motion
recognition, as we can directly compare invariances of two
translated and rotated trajectories [11], [10], [14]. However,
invariant policy descriptions can also be used to control
a robot. The advantage of such a description is that the
policy is the same no matter how the trajectory has to be
translated and rotated in space. This is because the rotation
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and translation are determined relative to the previous robot
pose. Another, perhaps more important benefit is that the
assembled object can move freely (with some limitations)
during the assembly. At the same time, the policy inherently
adapts to the geometric changes of the environment, e.g, the
base of an assembled object.

For proper execution of the invariant policies, it is ex-
tremely important to estimate proper values of invariances at
the robot’s current pose and, consequently, precise estimation
of the phase variable s. As we will see in the next section, we
allow the robot to adapt to environmental changes by setting
the controller compliant in all axes except in the tangential
direction of motion. For this reason, we can not apply Eq. 17
for phase calculation anymore. Let’s consider, for example,
the simplest possible case, where the robot has to follow
a straight rod (or insert a round peg into a hole, which is
the equivalent case). We allow the rod to change its position
and orientation constantly. In such a case, the robot performs
substantial position and rotational motion. On the other hand,
all that matters is the relative path along the rod. Relative
paths on the rod can be obtained by projecting the robot’s
motion to the vector aligned with the current rod orientation.
This vector can be calculated from the current object pose
and the predicted object pose, given by Eqs. (4–6). During the
online reconstruction of the robot policy, the phase variable
is thus calculated as

s(k) =

T∑

1

(p(k)-p(k-1)+2γ log(q(k)∗q(k-1))·a(k). (23)

In the above equation, the operator (·) denotes the scalar
product and a(k) = Ro(k)[1 0 0]T is the x axis of the object
frame. The calculation of the phase variable also reveals the
main limitation of our approach to robust assembly. Namely,
the assembled object must never move in the direction of the
current tangent of the assembly trajectory, as this results in
improper phase determination.

When controlling the robot, the robot’s actual position
lags behind the reference position due to uncompensated
friction in the joints and friction with the robot environment.
Therefore, in the incremental generation of the trajectory,
where we feed an offset from the current position, the robot
often may not move at all. To overcome the above-mentioned
problem, we propose adaptive lag compensation. The phase
error is defined as

es(s) = ∥ṗd(s)− ṗ(s)∥+ γ∥ωd(s)− ω(s)∥ (24)

Based on the estimated phase error, we calculate a new phase
variable

s∗ = s+ δ

∫
es(s)dt, (25)

which is used to encode ν̂(k) and ω̂(k) that are feed to the
robot controller

ν̂(s) = x(s∗)wν (26)
ω̂(s) = X(s∗)Wω. (27)

δ is a suitably chosen or learned positive constant. The pro-
posed lag compensation algorithm effectively compensates

for the unknown friction and assures the robot follows the
desired path with a given velocity.

Summarizing, during the reconstruction, the phase is cal-
culated by Eq. (23), translational and angular velocities ν̂(s)
and ω̂(s) are calculated using Eq. (26, 27) and the next
trajectory sample, which is passed to the robot controller,
is obtained using Eq. (9).

III. ADAPTIVE IMPEDANCE CONTROLLER (AIC)

This section presents a controller that can autonomously
adapt to environmental constraints. We assume that the
environment constrains the robot’s motion so that only one
direction is possible at any given time. Rotations are also
constrained so that the robot’s orientation can only change
around this direction. It is referred to as the tangential
direction of the assembly trajectory. We formalize this motion
control by utilizing the object frame Ro introduced in
the previous section, which is attached to the robot tool
center point (TCP). Given the object frame, we need a
control law enabling arbitrary compliance application along
the frame axes. In our experiments, we used the passivity-
based impedance control designed for manipulators with
flexible joints [15]. However, it was necessary to modify the
control law to freely set compliance in the object frame. The
commanded torque ρc ∈ RN , which is passed to the robot
motors, is calculated as 1

ρc = BB−1
Θ u+ (I−BB−1

Θ )ρ, (28)

u = JT(θ)

([
fc

mc

]
+

[
fa

ma

])
+ g(θ) +N(θ)θ̇0,

where N is the number of robot joints, θ ∈ RN is the
vector of joint angles estimated from the corresponding
motor angles Θ ∈ RN [16], J ∈ RN×6 is the manipulator
Jacobian, while B, BΘ ∈ R6×6 denote the positive definite
diagonal matrices of the actual and the desired joint inertia,
respectively. The aim of the term BB−1

Θ is to reduce the
joint inertia. ρ are the measured joint torques, and g(θ) is
the gravity vector [17]. N(θ) = (I−J+(θ)J(θ)) ∈ RN×N is
the null space projection operator, J+(θ) denotes the Moore-
Penrose pseudo-inverse of the Jacobian and θ̇0 ∈ RN is the
null space velocity vector. fa and ma are additional forces
and torque vectors in task coordinates, which are used to
override the effect of friction forces during the assembly.
The motor torque controller (28) reduces the motor inertia
and compensates for the robot’s non-linear dynamics. In
contrast, the second part of Eq. (28) provides for the desired
impedance and damping, additional task force, and null space
motion. The task command input [fTc ,m

T
c ]

T is chosen as

fc = −RoDpR
T
o ṗ+RoKpR

T
o ep, (29)

mc = −RoDoR
T
o ω +RoKoR

T
o eq, (30)

where position and orientation tracking errors are defined
as ep = pd − p and eq = 2 log(q ∗ qd). Kp and Ko ∈

1for the sake of simplicity, we omitted discrete time index k in the
following equations
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R3×3 are the diagonal matrices that define the positional
and rotational stiffness along and around coordinate axes.
Dp and Do ∈ R3×3 are diagonal damping matrices, which
are set as diagonal elements of the block diagonal matrix
calculated so that the overall system is critically damped.
The null space velocity has to be controlled to prevent non-
conservative motion. An appropriate solution is to set the
desired null space velocities to zero, θ̇0 = −Knθ̇, which
results in an energy dissipation controller [18]. Kn ∈ RN×N

is a positive-definite diagonal gain matrix.
Next, it is essential to provide the necessary controller

stiffness when the robot is expected to change its direction
of motion, i.e, the controller should adapt its compliance ac-
cording to the commanded motion. We propose the following
formulation of variable compliance:

Kp =



kps |ν| 0 0

0 0 0

0 0 0


 (31)

ωo = Roω (32)

Ko =



kos |ωox | 0 0

0 kos |ωoy | 0

0 0 kos |ωoz |


 (33)

To preserve stability, the diagonal elements of Kp and Ko

are limited by an upper bound.
The variable compliance along the object frame ensures

the basic adaptation of the regulation law according to the
limitations of the environment. However, this adaptation
alone may not be enough. Such a control law might fail due
to uncompensated friction in the robot joints and/or friction
between individual objects during assembly, especially when
inserting pegs into very tight holes. Different measures
should be taken to avoid the above-mentioned problems.
Force control is often used to realize a remote center of
compliance [19]

fa = KfRo(fd − f), (34)
ma = KmRo(md −m). (35)

Kf and Km are force controllers gains, fd and md are
the desired forces and torques (usually set to 0), and f and
m are measured forces and torques from the sensor in tool
coordinates. Transformation Ro maps the measured forces
and torques from the tool coordinate system to the robot
coordinate system.

Another approach is to learn the appropriate additional
forces and torques fa,ma, as proposed in [20]. In their
work, the authors propose to superimpose force and torque
oscillations, where the meta parameters of the direction,
amplitude, and frequency of oscillating force are learned.
Others propose a dithering signal with predefined constant
parameters [21], [22]. In our approach, we also chose a
constant frequency of oscillations. In contrast, the direction
of the oscillations was adapted according to the tangent of
the movement, and the amplitude depended on the tracking

error. Thus, the superimposed forces are given by

fa(k) = Ro[1 0 0]Tκ(|ep(k)|)(sin(kπ/4) + 1) (36)

where κ is a constant that determines the superimposed
force amplitude and vectors pd,p denote commanded and
measured position, respectively.

The corresponding overall control scheme for real-time
adaptation of assembly policy is outlined in Fig. 3.

ADAPTIVE 
IMPEDANCE 
CONTROLLER

ROBOT
INCREMENTAL 
TRAJECTORY 
CONTROLLER

Invariant
trajectory

𝒑𝑑 , 𝒒𝑑 𝝆𝑐𝒘𝜈,𝑾𝜔

KINEMATIC 
TRANSFORMATIONS

𝜽, ሶ𝜽

𝒑, ሶ𝒑
𝒒,𝝎

Fig. 3. Incremental controller block scheme.

IV. INITIAL POSE SEARCH WITH ERGODIC CONTROL

For the robot to follow the environmental constraints
imposed by the assembly operation, it must reach the re-
quired initial pose with generally very low tolerances. Vi-
sion processing alone cannot assure the required accuracy;
therefore, we propose combining vision with an active search
algorithm. For active search, we apply a framework based on
ergodic search [23], [24]. In contrast to the standard control
problem, where the goal is to track the robot’s pose, the
goal of ergodic control is to track a distribution that needs to
be covered by the robot. Given the probability distribution,
the resulting system has natural exploration behaviors by
considering information about the regions that should be
explored.

Ergodic search can be viewed as a trajectory generator
whose input is the probability distribution. The output is a
smooth continuous trajectory that visits spatially distributed
locations according to the given probability distribution. The
original approach [23] is based on quadratic cost minimiza-
tion and representation of the trajectories with Fourier series.
The Fourier series coefficients are computed using multi-
dimensional integration over the spatial domain, which can
be computationally costly for high-dimensional state spaces.
Moreover, the control loop involves algebraic operations on
multi-dimensional arrays, making the original approach too
slow for real-time applications in high-dimensional tasks.
This problem was addressed in [24] by relying on tensor
trains, an approach for low-rank factorization of tensor
data, used to compute Fourier coefficients efficiently. Conse-
quently, the ergodic trajectory can be computed in real-time,
even for six DOF distributions. The proposed approach was
experimentally verified in a peg-in-hole task, demonstrating
the robustness of the approach to peg displacements within
the robot gripper. Comparison with traditional search meth-
ods such as Gaussian Mixture Model (GMM) sampling and
spiral search demonstrated that an ergodic controller exceeds
other methods in terms of speed (time to find the hole)
and success rate. Fig. 4 shows a typical trajectory generated
by ergodic control and a trajectory generated with random
sampling for a three-DOF problem.

Page 49 of 77



Ergodic control is thus a perfect candidate for an active
search for the initial pose in assembly tasks. However, to limit
the search space, we apply vision processing. The assembled
object is captured with an RGB-D camera. The point cloud
P0 = {pi}Ni=1 consisting of N points on the object is asso-
ciated with a probability distribution for the initial assembly
pose. Point cloud and probability distributions are associated
by computing a homogeneous transformation Ta between
their centers. We assume that we obtained an assembly policy
for the object at a location giving rise to point cloud P0. Next
time we perform the assembly on a possibly translated and
rotated object, we capture the point cloud P1 and compute
the transformation matrix Tb between P0 and P1. In our
case, transformation matrix Tb was computed using the
CloudCompare [25] implementation of the Iterative Closest
point (ICP) algorithm [26].

To calculate the probability distribution for the assembled
object pose, we apply the transformation TaTbT

−1
a to

the probability distribution at the original pose. Next, we
calculate the corresponding ergodic trajectory and execute it.
When the robot finds the initial pose2 We start the assembly
by taking the current robot pose as the initial. Since the
trajectory is computed incrementally using Eq. (9), we do
not need to apply any other transformation.

V. EXPERIMENTAL EVALUATION

In this section, we experimentally verify the proposed
framework for the robust execution of contact policies,
applied to the seven degrees-of-freedom collaborative robot
Franka Research 3 equipped with a two fingers gripper.
The AIC controller was implemented using the libfranka
library and ros control framework in C++. The incremental
controller, ergodic controller, and vision processing were
implemented in Matlab and Python and communicated with
the AIC using ROS. Point clouds were captured using the
Intel RealSense D435i RGB-D camera.

The first experiments were done on a mockup covering
all the essential assembly problems. It consists of a curved
rod on which there is a sliding bearing. The sliding bearing
is equipped with a screw mechanism, which is used to fix

2Usually, we use position and force measurements to detect that the robot
has found the initial pose. This detection method is case-specific.

Ergodic exploration Sampling based search

Fig. 4. Example trajectories of ergodic exploration strategy (left) and the
sampling-based search (right). The GMM has six equally weighted mixture
components (red spheres). Blue sphere is the selected target region within
the reference probability distributions. Note that the target region is unknown
to the search algorithm.

Fig. 5. Left: A mockup for testing assembly operations Right: Phase
variable and commanded trajectory invariances.

it to the thread attached to the rod’s other end. The rod is
clamped at one end only; the other end can be moved freely.
The mockup is shown in Figure 5.

The initial policy was learned by kinesthetic teaching with
the robot in gravity compensation mode and recalculated in a
pose-invariant incremental representation. The corresponding
invariant variables are shown in Fig. 5. A simple replay of the
learned trajectory failed. The robot got stuck in the curved
part of the rod. The results are shown in Fig. 6 left, where
we can notice increased force in the local x direction as
the robot gets stuck. Next, we applied the AIC proposed in
Section III. The robot successfully accomplished the task, as
shown in Fig. 6 center. The increased force in x direction
is due to the contact with the thread attached at the rod end
during the screwing. However, it could not complete the task
if we randomly moved the other end of the rod extensively
during the task. Finally, we performed the same experiment
by applying incremental policy updates from pose invariances
(Subsection II-B) and AIC. The robot accomplished the
task successfully despite extensive disturbances induced by
randomly moving the free side of the rod, as long as the robot
joints stayed within physical limitations. The robot trajectory,
disturbed by the operator and the corresponding forces and
torques, are shown in Fig. 6 right. Note also that the contact
forces didn’t increase substantially despite the disturbances,
as AIC suppressed them effectively.

The next experiment was the bayonet bulb insertion for
experimental evaluation. The first part of the task is a peg-in-
hole task, where a gap in the bayonet bulb casing determines
the bulb’s orientation. The next part is the rotation of the bulb
to lock it in the final position. The car bulb and the casing
(see Fig. 8 left) were 3D printed and fit each other well 3. The
assembly policy was learned by demonstration. After learn-
ing, we captured the bulb casing point cloud P0. Next, we
captured 32 images of the bulb casing from 32 perspectives
and calculated the centers and principal axes of the gathered
point clouds using the CloudCompare framework. The point
clouds and the probability distributions for positions in a

3Please note that due to the low tolerances, assembly of the printed bulb
was more challenging than the assembly of the real bulb, considered in our
previous research [27]
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Fig. 6. Robot trajectories, contact forces, and torques obtained with different control algorithms and trajectory generation schemes.

GMM form are shown in Fig. 7, left. Finally, we encoded
the assembly policy in a position/orientation invariant form,
as described in Section II.

To test the robustness of assembly regarding the unknown
position and orientation of the bulb casing, we mounted
it on an inclined plate whose position and rotation were
unknown to the robot (see Fig. 8). We recorded the point
cloud P1 and displaced the GMM distribution associated with
P0 to the new pose (Fig. 7 right). Based on the displaced
distribution, the ergodic controller found a new initial pose
for the assembly in 9 seconds on average. After that, the robot
successfully inserted the bulb in a casing by incremental
policy updates from pose invariances and the proposed AIC.
The phase variable and invariances are shown in Fig. 8.
Finally, we repeated the same experiment, but this time the
case was held by a human performing random displacements
of the housing. Nevertheless, the robot successfully inserted
the bulb into the housing using the proposed framework. The
corresponding videos of all experiments illustrate the robust
assembly using invariant policy representation.

VI. CONCLUSION

In this research, we considered the problem of robust exe-
cution of the assembly tasks, where the pose of the assembled
object is not known in advance. Regardless of whether we
can precisely determine the starting point of the assembly,
even minimal changes in the orientation assessment can
cause large deviations, especially for extended objects. In
addition, the usual assembly procedures fail if the object’s
posture changes during assembly. Our main challenge was
developing a methodology for assembly policy generation
that seamlessly adapts to environmental changes.

We addressed two problems, a) how to generate an envi-
ronmentally adaptable assembly policy and b) determine the
starting point for implementing an assembly policy. To solve
the first problem, we proposed incremental execution of the
trajectory using AIC and pose-invariant formulation of the
policy. We combined point clouds and an ergodic controller
to solve the second problem.

The proposed approach is suitable for assembly operations
and can be used for many other tasks where the robot is in
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Fig. 7. Left: Point cloud of the bulb casing P0 (grey) and the GMM
for the positional distribution used in ergodic controller (yellow-red); Right:
Displaced point cloud P1 (grey) and a positional trajectory for the ergodic
search (yellow).

Fig. 8. Left: Franka robot during the execution of the position and orien-
tation invariant policy for the bayonet bulb insertion into the casing. Right:
Phase and commanded trajectory invariances for bayonet bulb insertion.

constant contact with the environment. The requirement that
the assembled object never moves in the direction of the
current tangent of the assembly trajectory can be overridden
by additional sensors, e.g., vision. Further steps in our
research will extend our framework to assembly cases where
a component carried by the robot may shift in the gripper
due to imperfect grasping.
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Abstract: Tactile robots can perform complex interaction skills, e.g., polishing. Such robots should
therefore be designed to be adaptive to environmental uncertainties such as changing geometry and
contact-loss. To address this, we propose a tactile exploration technique to observe the local curvatures
of the physical constraints such as corners, edges, etc. for updating predefined tactile skill policies
accordingly. First, we develop a unified force-impedance control approach in which the force controller
significantly improves the geometry following performance due to the ensured contact. Second, we use
the proposed controller to autonomously investigate the unknown environment via the local curvature
observer, designed to be a dynamic process. Finally, the exploration performance of the proposed
controller is demonstrated by using a polishing skill on an unknown 3D surface, where the robot is
observed to autonomously investigate the unknown surface from top to bottom along the edges and
corners.

Keywords: Intelligent robotics, Autonomous robotic systems

1. INTRODUCTION

Robotic systems have been deployed in human sectors such as
manufacturing, production, and service since the introduction
of industrial robots. Such human sectors involve complex inter-
action tasks that must be executed in dynamic and unstructured
environments. Traditional position-controlled industrial robots
lack these adaptable and versatile characteristics. While new
generation torque-controlled robots, as discussed by Hirzinger
et al. (2001), provide the option of compliant behaviors via ad-
mittance control in Shahriari et al. (2017), impedance control in
Hogan (1984), or force control in Khatib (1987). Additionally,
Kirschner et al. (2021) demonstrated that the type of robot and
controller are key factors in interaction skill performance.

Haddadin et al. (2019) discusses extensively the key to the
use of tactile robots for performing complex interaction skills
such as polishing is to utilize their ability of the recognition
of touch. Preferably, as argued by Karacan et al. (2022), the
human operator should give the archetypical solution to such
robots, along with the desired tactile actions such as force and
motion policies. Using polishing as an example, the human
operator instructs the robot to polish a scratch on a surface with
a desired force. However, the robot should be programmed to
be adaptive to environmental uncertainties such as contact loss,
which can damage the robot or the surrounding environment
during applying force.

The state-of-the-art in tactile robot programming, on the other
hand, still demands a fairly accurate model of the environ-
ment. Furthermore, not only is the task becoming more com-
plex, but transferring it to a different environment demands
re-programming and, as a result, expert knowledge, as shown

� Corresponding Author: Kübra Karacan kuebra.karacan@tum.de

fd

xd

Fig. 1. Tactile exploration via local curvature observer. The
robot follows a desired Cartesian motion while constantly
applying a desired force in the z-direction. When the robot
encounters an edge of the table (a 90-degree cliff), it
rotates and adapts itself. If the contact is completely lost,
the robot stops the force controller.

in Johannsmeier et al. (2019). Hence, new solutions to ease
the (re-)programming of tactile tasks must be developed for
increased flexibility and adaptation in tactile robot capabilities,
see the study of Haddadin et al. (2022). To address the afore-
mentioned problems, tactile exploration is a useful approach to
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investigate the unknown environment. Haddadin et al. (2010)
and Haddadin et al. (2011) previously studied tactile explo-
ration by leveraging novel collision avoidance algorithms and
achieved preliminary results.

In this work, we develop an advanced tactile exploration strat-
egy based on unified force-impedance control. Our novel ex-
ploration strategy investigates unknown environments via local
curvature observer in real-time manner, designed to be a dy-
namic process (see Fig. 1). First, we develop a unified force-
impedance control approach that allows the robot to adjust
its impedance parameters to the environment. Here, the force
controller is crucial as it significantly increases the geometry
following performance due to the ensured contact. Second, we
use the proposed controller to investigate autonomously the en-
vironment by observing the local curvatures. Finally, the tactile
exploration performance of the controller is proven by using
a polishing skill on an unknown 3D surfaces. The proposed
method is used to polish a table from the top surface to its edges
and finally to the bottom surface without knowing the model of
the environment.

The rest of the paper is presented as follows. Section 2 discusses
the related literature, and Sec. 3 introduces our novel unified
force-impedance control-based tactile exploration strategy and
the local curvature observer for tactile skills. The experimental
protocol and the corresponding results are demonstrated in
Sec. 4 and Sec. 5. Lastly, Sec. 6 finalizes the paper.

2. RELATED LITERATURE

Robotic tactile skills such as polishing, filing, and grinding
need accurate control of interaction to the end-effector. Namely,
force and motion policies should be combined to develop
tactile skills. Hence, robotic systems need to develop complex
perceptuo-motor abilities to handle such skills, as studied in
Pastor et al. (2011). Furthermore, Hogan (1984) shows that
position control is insufficient to realize such tactile skills and
alternative control strategies should be considered, such as e.g.,
force control in Khatib (1987), using admittance control in
Shahriari et al. (2017), and even unified methods in Schindlbeck
and Haddadin (2015).

Additionally, numerous works have taken into account force
control, validating the suggested controllers using constant
force values or as thresholds or limitations, as discussed in
Ficuciello et al. (2015); Kulakov et al. (2015); Ott et al. (2015);
He et al. (2016). The robots must, however, be smart enough to
operate autonomously in uncertain environments and complete
required tasks when faced with perception uncertainties, shown
in Pastor et al. (2012); Kramberger et al. (2016).

To attain a more human-like response for the contact at the end-
effector, adaptive adjustment of the impedance parameters is
helpful in many applications such as Yang et al. (2011). The
Wavelet Neural Network has been applied by Hamedani et al.
(2021) to integrate compliant force tracking on the unknown
geometry.

Force information and historical position from the end-effector
is used to predict shape profile in Qian et al. (2019). In an-
other study, Lepora and Lloyd (2020) developed new tactile
capabilities with the soft tactile sensors and neural networks in-
clude using a pose-based servo control, where a tactile fingertip
mounted on a robot arm slides delicately over unknown com-
plex 3D objects. There exist other exploration approaches such

as using mechanics in Balatti et al. (2020), learning (offline) in
Simonič et al. (2019), and control theory in Kato et al. (2022).

In this paper, we propose a unified force-impedance control-
based tactile exploration technique to observe the local curva-
tures of the physical constraints to understand corners, edges,
etc., for updating the predefined tactile skill policies accord-
ingly. First, we develop a unified force-impedance control ap-
proach that allows the robot to adjust its impedance parameters
to the unknown environment. Using force control, in particular,
makes exploration easier as the contact is ensured during the
process. Second, we propose a dynamic process to observe the
local curvature of the environment, and use it to align the tool
while exploring the corresponding contact surface. Finally, the
exploration performance of the controller is demonstrated by
using a polishing skill on an unknown 3D surfaces.

3. METHODOLOGY

A robot expert establishes a tactile skill library relying on intu-
itive estimation of the physical constraints of the environment.
Using the polishing skill as an instance, the robot expert trains
the robot with certain tactile action policies, including the mo-
tion and force profiles. Yet, carrying out of the desired task, the
robot should have the autonomy to adjust those intended tactile
action policies to the entirely or partially unknown environ-
ment. Even if the robot has an external sensing capability, such
as a camera, it may still operate within tolerance, particularly
under a fairly cluttered environment. Hence, the tactile skills
should be developed to allow the robot to adjust the appropriate
tactile skills to the surroundings with as little interference from
outside as possible.

Considering the fact that the robot runs a tactile skill defined for
certain conditions, changes in the geometry could be inferred
from the local curvature. Here, we use an exploration strategy to
investigate the physical constraints of the environment such as
corners and edges via local curvature observer. The exploration
strategy utilizes adaptive-stiffness of the impedance controller
as well as the robust contact via force controller, see Fig.2.
Additionally, the recorded geometry information of the physical
constraint might further be used to generate motion and force
profiles for a new surface.

3.1 Preliminaries

The dynamics equation for a robot with n-DOF in Cartesian
space is

MC(q)ẍ+CC(q, q̇)ẋ+ fg(q) = fin + fext , (1)

where x, ẋ ∈ R
6 are the Cartesian pose and twist. The external

wrench on the robot is fext ∈ R
6. MC(q), CC(q, q̇) ∈

R
6×6 , and fg(q) are the robot mass matrix, the Coriolis and

centrifugal matrix, and the gravity vector in Cartesian space,
respectively. Additionally, fin is the input wrench in Cartesian
space and relates to the joint torques via robot’s Jacobian matrix
J ∈ R

6×n τin ∈ R
n by τin = JT (q)fin.

3.2 Controller Design

The proposed control law for exploration is extended from
unified force-impedance control by Schindlbeck and Haddadin
(2015) with four main components:

I) tracking the desired Cartesian pose xd with the impedance
controller,
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Fig. 2. Block diagram for unified force-impedance control-based local curvature observer for tactile exploration architecture. The
predefined tactile skills are adjusted to the unknown environment by using force shaping ρfrc and exploration blocks. The
state switching is handled via ρobs.

II) exploring the transformation matrix T 0
ee,

III) following the commanded force fd, and
IV) gravity compensation τg .

The input torque τin ∈ R
n is:

τin = τimp + τfrc + τg , (2)

where τimp, τfrc, and τg ∈ R
n are the input torques with respect

to (i) impedance control (ii) force control and (iii) gravity
compensation.

Impedance Control In order to establish a desired Cartesian
impedance behavior at the tool, the following control law is
defined

τimp = JT (q)(KC x̃+DC
˙̃x+MC(q)ẍd +CC(q, q̇)ẋd),

x̃ = xd − x, (3)

where x ∈ R
6 is the actual pose and the pose error is x̃.

Moreover, KC ,DC ∈ R
6×6 are time-varying stiffness and

damping matrices, respectively. The desired Cartesian inertia
is assumed to be the actual robot inertia in Cartesian space.

Force Control To control the desired force at the end effector
f ee
d ∈ R

6 w.r.t the external force f ee
ext ∈ R

6, we design the
controller as follows,

τfrc = ρfrcJ(q)
T

ï
[RO

ee]3×3 03×3

03×3 [RO
ee]3×3

ò
f ee
frc, (4)

f ee
frc = f ee

d +Kp f̃
ee
ext +Ki

∫
f̃ ee
ext dt+Kd

˙̃
f ee
ext , (5)

f̃ ee
ext = f ee

d + f ee
ext, (6)

where f ee
frc ∈ R

6 is a feedback force controller output with
the diagonal matrices of the PID gains Kp,Ki,Kd ∈ R

6×6.
Furthermore, force shaping function ρfrc decides to activate or
deactivate the force controller based on certain conditions.

Force Shaping Function In unified force-impedance control,
if the pose error in any direction is beyond the predefined
threshold for a direction δfrc, for example, due to the envi-
ronment change, the shaping function presents the contact-
loss behavior and starts the force shaping function ρfrc, which

degrades the effect of the force controller. In order to ensure
a smooth transition, instead of a chattering behavior, ρfrc in-
terpolates in a user defined threshold δfrc. δfrc is the distance
range in which the robot can move safely after the contact-
loss takes place, while still exerting some force in the desired
direction. The magnitude of force is however regulated by the
force shaping function ρfrc. Increasing δfrc also increases the
range of motion in which the robot is allowed to move while
keep applying the force in the desired direction. Consequently,
ρfrc is

ρfrc=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 , f ee
d

T x̃ee ≥ 0

0.5(1 + cos(π(
|x̃ee

z |
δfrc

))) , f ee
d

T x̃ee < 0

∧ 0 < |x̃ee
z | ≤ δfrc

0 , else

(7)

Finally, the closed loop equation for the overall system becomes

MC(q)¨̃x+CC(q, q̇) ˙̃x+DC
˙̃x+KC x̃+ ffrc + fext = 0 .

(8)

3.3 Tactile Exploration Strategy

The state machine in Fig. 3 explains the exploration strategy.
Exploration consists of three major states: adaptation, task, and
contact-loss. State adaptation allows the end-effector to adjust
itself to the physical constraints of the environment.

The end effector of the robot is equipped with a tool with certain
dimensions. When the tool is at an angle with the surface, the
external force in z direction f ee

z creates a moment about x and
y-axis Mxy,ee = [Mx,ee My,ee] ∈ R

2. L2 norm of moments
about x and y-axis ||Mxy,ee||2 gives us the length of Mxy,ee.
Thus, local curvature lc is given as fraction of Mxy,ee and f ee

z .
lc greater than the threshold value indicates that the tools need
to be realigned to the surface.

Here, the curvature observer ρobs is computed from a normal-
ized curvature coefficient α

α =
lcthreshold − lc

lcthreshold
, (9)
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Finite State Machine

Contact-loss

Adaptation

lc > lcthreshold

lc ≤ lcthreshold

ρfrc < ρfrc_threshold

Task and

geometry recording

Fig. 3. State machine for exploration in simplified form. When
the robot is in exploration state, the rotational stiffness
about x- and y- directions Kr,x and Kr,y is zero. This
allows the robot to follow the unknown geometry while
it moves via the translational stiffness. And the stiffness
matrix of the end-effector is also rotated.

where the curvature observer ρobs is obtained by the dynamics

ρ̇obs =

⎧⎪⎨
⎪⎩
min{ρ, 0} , ρobs = 1

ρ , 0 < ρobs < 1, ρobs(0) = 0,

max{ρ, 0} , ρobs = 0

(10)

and ρ is given by

ρ = αρobs + ρmin. (11)

Note that, in order to have an initial increment for the case
ρobs = 0, a small positive constant ρmin has been introduced
into the curvature observer dynamics. It is noteworthy that the
solution for the curvature observer dynamics allows us to have
the behavior for increasing or decreasing exponential function
based on the local curvature and, thus, is used to switch the
between the exploration motion and the task.

The task state computes the new trajectory T 0
ee,traj to follow,

once the contact is re-established. And the robot runs the new
trajectory until the end effector is no longer in contact with
the environment, i.e., lc > lcthreshold meaning ρobs < 1. In
detailed, lc created due to external force fz on the end effector
indicates if the robot is in complete contact with the surface
or not, and therefore is included in the curvature observer
dynamics as a transition parameter between different states
(ρobs =1 or 0).

Algorithm 1 State adaptation and local curvature observer

Input Mx,ee, My,ee, fz , T 0
ee

Output T 0
d

1: Initialization: {p0
traj, R0

traj} = T0
traj,

2: loop:
3: M xy,ee = ||[M x,eeM y,ee]||2.

4: lc =
Mxy,ee

fz
.

5: if ρobs < 1 then
6: R0

d = R0
ee

7: p0
d = p0

traj

8: T 0
d = {p0

traj, R
0
ee}

9: δfrc ← δfrc + δincrement

10: end if
11: goto loop.
12: close;

The state of contact-loss makes sure that no unwanted rapid
motions occur. If ρfrc < ρfrc,threshold, the contact-loss state

stops the robot and prevents unwanted rapid motion that could
endanger the robot and the environment.

State adaptation explained in Alg. 1 tries to minimize the
moment about x and y-axis. This is done by setting zero
rotational stiffness about x and y-axis and at the same time
maintaining the last position where the tool unaligned itself.
The zero stiffness is achieved by setting the desired orientation
around x- and y-axis as current orientation. This can be seen
in line 7,8 and 9 in algorithm state adaptation. Therefore, the
tool is free to move along x- and y-axis while applying force
in desired direction. Moreover, in line 10, the translational

Algorithm 2 State Task and Information Saving

Input Mx,ee, My,ee, fz , T 0
ee

Output T 0
d

1: Initialization: T0
ee,temp = T0

ee,
2: loop:

3: lc =
Mxy,ee

fz
.

4: if ρobs = 1 then
5: T 0

ee,traj = T 0
ee,tempT

ee
d

6: T 0
d = T 0

ee,traj

7: T 0
record = T 0

d

8: end if
9: goto loop.

10: close;

distance range δfrc is incremented by the factor of δincrement

until the end-effector is able to apply the desired force onto
the surface. Furthermore, if the tool attached to the end-effector
is not in the desired contact with the surface, the reaction
force applied by the environment creates a moment about x
and y-axis. The resulting moment due to increase in δfrc, zero
rotational stiffness about x- and y-axis and low stiffness in z
direction causes the robot to move in z-direction and at the same
time adapt itself to always stay normal to the surface until the
end-effector is able to make complete contact with the surface.

State task and information saving in Alg. 2 plans the trajectory
and saves the current position and orientation of the end effec-
tor. This state is only active when the tool is completely aligned
with the surface. The T0

ee,temp is updated only once at the entry of
this state. Finally, the saved data may be used for future motion
and force profile generation.

4. EXPERIMENTAL SETUP

To evaluate the exploration, adaptation, and control perfor-
mance of our framework for the tactile skills to run under
unknown physical constraints, the experiments are conducted
using a Franka Emika robot for a polishing skill. Polishing
requires the robot applying a desired wrench f ee

d on the sur-
face while tracking a circular motion T ee

d (t) represented by
R = I3×3 and

pee
d (t) = [0.1 sin(0.5t), 0.1 cos(0.5t), 0]T , (12)

f ee
d = [0, 0, 35N, 0, 0, 0]T . (13)

The radius of the tool is 0.06 m and therefore the threshold
value lcthreshold is taken as 0.025 m (see Table 1 for other
parameters used).

The robot follows a trajectory in one direction while constantly
maintaining force in the z-direction. The end-effector is able
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Table 1. Parameters used throughout the experi-
ments.

Property Unit Value

Kc N/m diag[1000,1000,10,0,0,70]

ξ Ns/m diag[0.7,0.7,0.7,1,1,1]

lcthreshold m 0.025

Kp,Ki,Kd - 0.5I6×6, 0.5I6×6, 0I6×6

δfrc(0) m [0.05, 0.05, 0.05, 0.05, 0.05, 0.05]

ρfrc,threshold - 0.1

ρmin - 0.001

b)

a)

c)

Fig. 4. Experimental results for polishing the car-door. During
the contact, ρfrc is 1 and regulates the external force.
ρobs decides the state of the robot (exploration or task) to
adapt to the changing geometry. a) Shaping functions ρobs
and ρfrc, b) External force at the end-effector, c) Actual
position x, y, and z w.r.t to the robot base frame.

to maintain the full contact, and it moves until the environ-
ment changes. In the first set of experiments, the robot should
polish a car-door without knowing the geometry of the envi-
ronment. The expected behavior of the robot is that the end-
effector should follow the geometry while polishing it. Second,
the robot should polish a table without geometry information.
Moreover, when the robot encounters an edge of the table (a
90-degree cliff), it should be able to rotate and adapt itself.
The goal is to make sure that the end-effector is always in
full contact and aligned with the surface. Additionally, during
the experiments, the robot’s own internal sensing capabilities
are used to obtain the external force/torque measurements, as
analyzed by Haddadin et al. (2017).

5. RESULTS AND DISCUSSION

It can be seen in Fig. 4 and Fig. 5 that when the polishing
tool is not in complete contact with the environment or the
robot starts encountering the cliff, ρfrc starts declining and lc
starts increasing (ρobs decreases to zero), indicating that the tool
needs to be realigned to the surface. Thus, the state is switched
from the desired task (ρobs = 1) to tactile exploration (ρobs =
0). The exploration state is maintained until the polishing tool
is completely aligned to the surface, meaning lc ≤ lcthreshold
and ρobs = 1. After the polishing tool is adapted to the surface

b)

a)

c)

Fig. 5. Experimental results for polishing the table. During
the contact, ρfrc is 1 and regulates the external force.
ρobs decides the state of the robot (exploration or task) to
adapt to the changing geometry. a) Shaping functions ρobs
and ρfrc, b) External force at the end-effector, c) Actual
position x, y, and z w.r.t to the robot base frame.

geometry, the state changes back to the task and the polishing
tool starts moving in the desired trajectory again.

It is noteworthy that, the limitation of this approach is that the
local curvature observer depends on the type of the desired
contact. For instance, the single point contact is unlikely to
be achieved by using our method. Additionally, even though
the robot adapts the parameters of impedance and force con-
trol according to the abrupt changes in the environment, the
controller’s stability still might be compromised, as discussed
by Kronander and Billard (2016). Thus, one might consider
installing virtual energy tanks to stabilize the controller, as
introduced by Shahriari et al. (2022).

6. CONCLUSION

In this study, we develop a tactile exploration strategy based
on unified force-impedance control via local curvature ob-
server to update predefined tactile skill policies by ensuring
the tool and contact surface alignment. First, we design a uni-
fied force-impedance control that allows the robot to adjust
its impedance parameters to the unknown environment. Addi-
tionally, the force controller increases the geometry following
performance owing to the ensured contact. Second, we use the
controller to autonomously observe the local curvature of the
environment, designed as a dynamic process. Finally, the tactile
exploration performance of the controller is shown by using a
polishing skill on the unknown 3D surfaces. As a future work,
we will do feature extraction on the saved geometry information
in order to further generate motion and force profiles for the
new environment.
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Simonič, M., Žlajpah, L., Ude, A., and Nemec, B. (2019). Autonomous learning

of assembly tasks from the corresponding disassembly tasks. In 2019 IEEE-
RAS 19th International Conference on Humanoid Robots (Humanoids),
230–236. doi:10.1109/Humanoids43949.2019.9035052.

Yang, C., Ganesh, G., Haddadin, S., Parusel, S., Albu-Schaeffer, A., and Burdet,

E. (2011). Human-like adaptation of force and impedance in stable and

unstable interactions. IEEE transactions on robotics, 27(5), 918–930.

Page 59 of 77



A.6 “A Passivity-based Approach on Relocating High-Frequency Robot Con-
troller to the Edge Cloud”

This is the post-print version (author accepted manuscript) of the following publication: X.
Chen, H. Sadeghian, L. Chen, M. Tröbinger, A. Swirkir, A. Naceri, and S. Haddadin. “A
Passivity-based Approach on Relocating High-Frequency Robot Controller to the Edge Cloud”.
In: IEEE International Conference on Robotics and Automation (ICRA). 2023, pp. 5242–5248.

Page 60 of 77



A Passivity-based Approach on Relocating High-Frequency Robot
Controller to the Edge Cloud

Xiao Chen†, Hamid Sadeghian1, Lingyun Chen2, Mario Tröbinger, Abadalla Swirkir23,
Abdeldjallil Naceri and Sami Haddadin2

Abstract— As robots become more and more intelligent, the
complexity of the algorithms behind them is increasing. Since
these algorithms require high computation power from the
onboard robot controller, the weight of the robot and energy
consumption increases. A promising solution to tackle this issue
is to relocate the expensive computation to the cloud. In this
pioneering work, the possibility of relocating a state-of-the-art
nonlinear control is investigated. To this end, the Unified Force-
Impedance Controller (UFIC) is relocated to a remote location
and high frequency feedback loop is established by including
the remote controller in the loop. Passivity analysis is used
to ensure the stability of the whole system, comprising the
robot in interaction with the environment, the communication
channel, as well as the remote controller. The instability
associated with the communication channel is resolved by Time
Domain Passivity Approach (TDPA). The performance of the
proposed framework is experimentally evaluated on a robot
arm in interaction with the environment. The results illustrate
the stability of the system to a time-varying delay of up to
50± 10ms.

I. INTRODUCTION

The application of service robots is growing rapidly.
Robots are proposed for new near-to-the-human applications
every day. Working in dynamic and cluttered human environ-
ment demands fast and reliable sensing and advanced control
capabilities. The robot needs to perceive the environment
through many sensory data and sophisticated algorithms to
plan its motion. This is especially the case for humanoid and
mobile platforms, which require a lot of onboard computa-
tion on the robot controller, which in turn increases the power
consumption. On the other hand, this increases the weight
of the robot, reduces the agility and mobility of the system,
and making the robot expensive. A promising solution is to
offload expensive computations to the edge or cloud.

As the technology of cloud computing develops, Kuffner
in [1] introduces the cloud robotics terminology for the first
time. Since then, the idea of offloading computation to the
cloud attracted a lot of attention. Algorithms that process
large amount of data can benefit from cloud computing,
e.g. collective learning algorithms [2], Convolutional Neural
Network (CNN), vision-based applications [3] , and motion
planning in robotics [4]. Moreover, fast and more reliable

All authors are with the Munich Institute of Robotics and Machine
Intelligence, Technical University of Munich, Munich, Germany, 1 also with
Faculty of Engineering, University of Isfahan, 8174673441 Isfahan, Iran,
2 and the Centre for Tactile Internet with Human-in-the-Loop (CeTI), 3

and with the Department of Electrical and Electronic Engineering, Omar
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Fig. 1: Framework of relocating robot controller to the cloud.

wired or wireless communication protocols support this idea
and make it feasible.

Relocating high-frequency control to the real-time cloud or
edge cloud is a raising hot topic. Edge cloud aims to bring
the cloud closer to end-users by moving the computation
and storage closer to the network edge. The edge cloud
provides a range of benefits, including reduced latency,
improved performance, increased reliability, and reduced
network congestion. [5], [6] show that under certain criteria,
it is even feasible to run high-frequency real-time control
loops on the cloud. The first edge-based whole-body control
algorithm over a 5G wireless link was presented in [7].

A communication channel is non-passive due to delay
[8], making a network-coupled robotic system unstable,
especially when interacting with the environment. For a
typical telepresence setup, the controller runs on the local
computation unit with a direct connection to the robot to
ensure system stability and performance [9]. The stability
of a tactile robot in teleoperation under commercialized
communication network like 5G, LTE, and WiFi has been
investigated by the author of this paper in [10]. To ensure the
passivity of a network-coupled system, an energy-based Time
Domain Passivity Approach (TDPA) is applied to monitor
the system energy in real-time using a Passivity Observer
(PO) and adapt the controller gain accordingly using a
Passivity Controller (PC) [11]. TDPA is a powerful method
that can stabilize a system with communication delay and
package loss [12]. However, it sacrifices the performance
such as position tracking and transparent force feedback.
Many algorithms are proposed to reduce the conservatism of
TDPA [13] and increase the transparency of a teleoperation
system [14].

In this work, we will investigate the possibility of relocat-
ing the low-level and high-frequency torque controller into
the cloud. The overall system structure is illustrated in Fig.
1. In such a setting, the local controller provides sensory
data, and the remote controller receives the data and sends
commands back. Note that low-level control algorithm such
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as Unified Force-Impedance Controllers (UFIC) [15] rely on
a fast and real-time feedback control loop (usually 1kHz).
This is different from high-level AI planning services or
kinematic controllers, which provides/updates for instance
a reference trajectory with a lower sampling rate, and thus
hard real-time communication with the onboard robot control
is usually not crucial. Here, we aim to address the following
main questions:

- Can a tactile robot be controlled by running a low level
nonlinear controller on a remote location?

- How is the stability and performance of the system in
the presence of delay and packet loss in the communi-
cation channel?

- To what extent (entirely or partially), can the controller
be offloaded? How is the structure of such a shared
control?

Passivity analysis is utilized to establish a framework
for such cloud-in-loop control. The general architecture of
the system is designed to appear as the interconnection
of passive elements, comprising the robot, environment,
UFIC controller, and the two-ports communication channel.
Because there is no robot dynamics on the cloud, the
passivity analysis of UFIC need to be adapted. The quality
of communication channel is crucial to the stability and
performance of the system, and TDPA is used to ensure its
passivity through PO/PC located right before and after this
channel. Additionally, the energy tank [15] is used to ensure
the passivity of the controller located on the remote side.
The UFIC, in fact, only requires low computational power.
However, we use it here to demonstrate the feasibility of this
framework.

The rest of the paper is organized as follows. Section
II describes the modeling of the robot and transmission
channel. The main results of the paper are presented in
Section III. The performance of the proposed framework is
experimentally evaluated in Section IV. Finally, the paper is
concluded in Section V.

II. PRELIMINARIES

A. Robot Model
The dynamic of a n Degrees of Freedom (DoF) robot

manipulator in the joint space is given by

M (q) q̈ +C (q, q̇) q̇ + g (q) = τg + τext + τc (1)

where q ∈ Rn is the joint state, M (q) ∈ Rn×n and
C (q, q̇) ∈ Rn×n are the inertia and Coriolis/centrifugal
matrices, and g (q) ∈ Rn is the gravitational torques. The
control torque, external torque, and gravity compensation
torques are denoted by τc ∈ Rn , τext ∈ Rn and τg ∈ Rn,
respectively.

On the right-hand side of Equation (1), It is assumed
that the gravitational torques are compensated by the local
controller, which has the full dynamic model of the robot on
the local side. Thus, only τc may need high computational
power, which is computed in the cloud. Without loss of
generality, the robot dynamics is rewritten as

M (q) q̈ +C (q, q̇) q̇ = τext + τc. (2)

B. Unified Force Impedance Controller (UFIC)
The classical impedance and force control can be ex-

tended and unified into a single framework of unified force
impedance control by composition of an impedance control
torque τimp with a force control torque τfc [16],

τr = τimp + τfc. (3)

The impedance controller ensures that the robot follows a
desired trajectory with the following control law,

τimp =JT (q)(MC(q)ẍdes +CC(q, q̇)ẋdes

+Kxx̃+Dx
˙̃x)

(4)

where x̃ = xdes − x is the tracking error in task space x
with the desired trajectory xdes. J(q) denotes the Jacobian
matrix, Kx and Dx are the stiffness and damping matrices,
and MC(q) and CC(q, q̇) are the robot inertia matrix and
Coriolis/centrifugal matrix in Cartesian space.

The force control which regulate the interaction force fext

to following a desired force profile fdes is given by

τfc =JT (q)(fdes +Kp(fdes − fext) +Kd(ḟdes − ḟext)

+Kihi(fext, t)),
(5)

where hi(fext, t) :=
∫ t

0
(fdes(σ) − fext(σ))dσ. Kp, Ki

and Kd are the proportional, integral and derivative gains
respectively. This controller is intuitive and easy to imple-
ment. However, the passivity of the closed-loop system is
not preserved during interaction with the environment. An
energy tank can be further designed and augmented to the
system to ensure the passivity and thus stability of the system
[16].

C. Energy Flow Analysis in Two-Port Network
Consider a two-port discrete network system N with ∆T

as the sampling period, its energy flow is shown in Fig. 2.
The system is passive if and only if at time instance k,

E (0) + ∆T

k∑
i=0

(
q̇T
1 (i) τ1 (i) + q̇T

2 (i) τ2 (i)
)
≥ 0,

∀k ≥ 0

(6)

holds for velocities q̇j and torques τj , j ∈ {1, 2} [11]. The
product q̇T

j τj denotes the power flow at each port and it is
denoted positive if energy flows into the network. E (0) is the
system initial energy storage and without loss of generality,
we assume E (0) = 0.

N 𝝉2𝝉1

c𝐸𝑜𝑢𝑡
2𝐸𝑖𝑛

1

𝐸𝑖𝑛
2𝐸𝑜𝑢𝑡

1

ሶ𝒒2ሶ𝒒1

+ +

− −

Fig. 2: Energy flow of two-port network. The output energy should be less
than the input energy to ensure the network passivity.

In the TDPA, a Passivity Observer (PO) and Passivity
Controller (PC) are used to ensure the system time-domain
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passivity [12]. The PO observes the system energy in real-
time while the PC dissipates the energy generated by the
system. For a two-port system, the observed energy, Eob,
can be separated as input and output energy at each port, i.e.

Eob (k) = ∆T

k∑
i=0

(
q̇T
1 (i) τ1 (i) + q̇T

2 (i) τ2 (i)
)

= E1
in(k)− E1

out(k) + E2
in(k)− E2

out(k),

(7)

where the superscripts represent the port and the subscripts
show whether the energy goes in or out of the port. With the
power flow defined as P1(k) = q̇T

1 (k) τ1 (k) and P2(k) =
q̇T
2 (k) τ2 (k) and based on its sign, we can define the input

and output powers at each port as

P j
in(k) =

{
Pj(k) if Pj(k) > 0

0 otherwise,

P j
out(k) =

{
−Pj(k) if Pj(k) < 0

0 otherwise,

(8)

for j ∈ {1, 2}. Hence, the input and output energy at each
port can be calculated by integrating the power flow as
follows,

Ej
in(k) = ∆T

k∑
i=1

P j
in(i)

Ej
out(k) = ∆T

k∑
i=1

P j
out(i).

(9)

III. PROPOSED FRAMEWORK

A. General Structure

The general framework structure and data flow between
the local controller and the remote controller is illustrated
in Fig. 3. The local controller sends the local joint velocity
q̇l and the external torque τext to the remote controller in
the cloud. On the remote side, the data are received with
a forward delay df (t), i.e. q̇ld(t) = q̇l(t − df (t)) and
τextd(t) = τext(t − df (t)), t ∈ R. After computation on
the remote site, the remote command torque τr is transferred
back to the robot through the communication network with
backward delay db (t). The robot receives a delayed com-
mand torque τrd(t) = τr(t− db (t)).

Local Controller + 

Robot (in 

interaction with 

environment)

Communication 

Channel

Remote 

Controller 

in Cloud

ሶ𝒒𝑙 , 𝝉𝑒𝑥𝑡 ሶ𝒒𝑙𝑑 , , 𝝉𝑒𝑥𝑡𝑑

𝝉𝑟𝝉𝑟𝑑

Fig. 3: Data flow between the local controller at the robot side and the
remote controller. The communication network introduces time varying
delay to the data.

Since in practice, the robot runs in high frequency with
constant sampling time, the data transmission actually hap-
pens in discrete-time values, q̇ld (k) = q̇l(k − df (k)) ,
τextd (k) = τext(k − df (k)) , τrd (k) = τr (k − db(k)),
k ∈ N.

Furthermore, the dynamical model of the robot is available
in the cloud, in order to acquire the parameters like Cartesian
position x, inertia matrix MC(q) and Coriolis/centrifugal
matrix CC(q, q̇) in Cartesian space. To obtain high accuracy
in robot control, the dynamic model of the robot is identified
a priori using the approach presented in [17].

B. Passivity Framework for Analysis of the System

The whole system comprising robot/environment, remote
controller and the communication channel is arranged in four
subsystems in feedback loop interconnection as illustrated in
Fig .4. This preserves the passivity of the entire structure
while considering the passivity of each subsystem. It is
assumed that the robot is in interaction with a passive
environment meaning that the environment block is passive
w.r.t. input-output pair (q̇l,−τext). Additionally, it is easy
to show that the robot dynamics (2) is passive w.r.t. (τl +
τext, q̇l). Therefore, in this section, the passivity of the UFIC
with augmented energy tank w.r.t (−q̇r,−τr) is established.
Here, the q̇r is the modified q̇ld, which will be presented in
next section. Furthermore, the passivity of Communication
Channel combined with time domain PO/PC will also be
shown.

Fig. 4: The block diagram of the system in feedback interconnection of
passive elements. The robot in interaction with the environment, as well as
the controller, are depicted as one port passive system. The communication
channel is considered as two-port passive system.

First, consider the UFIC that is relocated in the cloud, with
the storage function defined as S = 1

2 x̃
TKxx̃. To show the

passivity of the controller, we need to show that its derivative
Ṡ ≤ q̇T

r τr. By exploiting (3) and considering the regulation
case, i.e. ẋdes = ẍdes = 0, the following is given

Ṡ = ẋTKxx̃

= q̇T
r J

TKxx̃

= q̇T
r (τr − JTDxẋ− JTKp(fdes − fextd)

− JTKd(ḟdes − ḟextd)− JThi(fextd, t))

= (−q̇T
r )(−τr)− ẋTDxẋ− ẋT (Kp(fdes − fextd)

+Kd(ḟdes − ḟextd) +Kihi(fextd, t)).
(10)

Where ẋ = JT q̇r. Since the sign of the last term is not
clear, the passivity of Unified Force-Impedance Controller
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Robot Communication 

Network

Controller 

in Cloud + 

Energy 

Tank

ሶ𝒒𝑟

𝝉𝑟

𝜶 𝜷

𝐸𝑜𝑢𝑡
𝑙

𝐸𝑖𝑛
𝑙

𝐸𝑖𝑛
𝑟

𝐸𝑜𝑢𝑡
𝑟

+

−

+

−

ሶ𝒒𝑙

𝝉𝑙 𝝉𝑟𝑑

ሶ𝒒𝑙𝑑

Local PC

Remote PC

Enviro

nment

𝝉𝑒𝑥𝑡

ሶ𝒒𝑙

Fig. 5: Diagram of proposed framework with two-port time domain PO/PC

w.r.t (−q̇r,−τr) is not guaranteed.
To show the passivity of the controller block, an energy

tank based method is introduced to modify the control
law. Let xt and T = 1

2x
2
t be the tank state and energy,

respectively. Also define the tank dynamics as

ẋt =
ζ

xt
(ẋTDxẋ+ γẋTKd(ḟdes − ḟextd)) + ut, (11)

where ζ is defined as

ζ =

{
1 if T ≤ Tmax

0 otherwise.
(12)

This indicates that when tank energy exceeds the allowed
maximum energy Tmax, no further energy will be loaded
into the tank. The control input of the tank is written as
ut = −ωT ẋ, with

ω =
η

xt
(Kp(fdes − fextd) + (1− γ)Kd(ḟdes − ḟextd)

−Kihi(fextd, t)).
(13)

By defining η as

η =

{
1 if T ≥ Tmin

0 otherwise
(14)

we can ensure that when the tank energy reaches the allowed
minimum energy Tmin, the force-impedance controller is
detached from the energy tank.

The parameter γ is defined to eliminate the negative value
and ensure the system passivity,

γ =

{
1 if ẋTKd(ḟdes − ḟextd) ≥ 0

0 otherwise
(15)

The original force-impedance controller (3) is now up-
dated with the energy tank as,

τr =JT (qr)(Kxx̃+Dxẋ+MC(qr)ẍdes

+CC(qr, q̇r)ẋdes + γKd(ḟdes − ḟextd)− ωxt)
(16)

The following theorem is given.

Theorem 1: The controller given in (16) realizes a passive
mapping with respect to input-output pair (−q̇r,−τr).

Proof: Consider the storage function defined as S =
1
2 x̃

TKxx̃ + 1
2x

2
t . The derivative of this function is derived

as follows,

Ṡ = ẋTKxx̃+ xtẋt

= q̇T
r J

TKxx̃+ xtẋt

= q̇T
r (τr − JTDxẋ− JT γKd(ḟdes − ḟextd)

+ JTωxt) + xtẋt

= q̇T
r τr − ẋT (Dxẋ+ γKd(ḟdes − ḟextd)− ωxt)

+ xtẋt

= q̇T
r τr − ẋT (Dxẋ+ γKd(ḟdes − ḟextd)−��ωxt)

+ ζ(ẋTDxẋ+ γẋTKd(ḟdes − ḟextd))−����xtω
T ẋ

= q̇T
r τr

− (1− ζ)(ẋTDxẋ+ γẋTKd(ḟdes − ḟextd))

≤ q̇T
r τr

= (−q̇T
r )(−τr)

(17)
Hence, the block is passive with respect to (−q̇r,−τr).

C. Two-Port TDPA for Communication Channel

The communication channel can be seen as a two-port net-
work. The energy of the communication channel is observed
by PO as

ECC(k) = El
in(k) + Er

in(k)− El
out(k)− Er

out(k) (18)

where superscript l indicates the local side and r indicates
the remote side.

In real-world communication network (wired or wireless),
problems such as time-varying delay and package loss are
inevitable. Therefore, it is impossible to observe the energy
at both side at the same time instance. The above issues are
the source of instability that is imposed by communication
channel and makes the coupled robot system unstable, espe-
cially when the robot is interacting with an environment.

Considering the network delay and package loss, and
noting that each input energy is monotonous, the sufficient
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condition of the system passivity (6) can be written as,

El
in(k − df (k)− lf (k)) ≥ El

in(k) ≥ Er
out(k)

Er
in(k − db(k)− lb(k)) ≥ Er

in(k) ≥ El
out(k)

(19)

where lf and lb are the package loss in forward and backward
communication. The PC modifies the torque or velocity to
dissipate extra energy. The energy needs to be dissipated at
sample time k is calculated as follows,

El
PC(k) = El

in(k − df (k)− lf (k))− Er
out(k)− El

diss(k − 1)

El
PC(k) = Er

in(k − db(k)− lb(k))− El
out(k)− Er

diss(k − 1)
(20)

The already dissipated energy by the PCs, i.e., El
diss(k)

and Er
diss(k) are given by

El
diss(k) = ∆T

k−1∑
i=1

∥τr(i)∥2β(i),

Er
diss(k) = ∆T

k−1∑
i=1

∥q̇l(i)∥2α(i).

(21)

In which the damping element α and β are calculated such
that, the condition (19) is satisfied, i.e.,

β(k) =


−Er

PC(k)
∆T∥τr(k)∥2 if Er

PC(k) < 0

and τr(k) ̸= 0

0 else

(22)

α(k) =


−El

PC(k)
∆T∥q̇l(k)∥2 if El

PC(k) < 0

and q̇l(k) ̸= 0

0 else

(23)

The actual joint velocity q̇r(k) received by the cloud
and the command torque τl(k) received by the robot are
calculated based on following PC laws,

q̇r(k) = q̇ld(k)− β(k)τr(k)

τl(k) = τrd(k)− α(k)q̇l(k)
(24)

The overall structure of the system including TDPA im-
plementation is depicted in Fig. 5.

The above analysis shows that the Communication Chan-
nel with Time Domain PC/PO as illustrated in Fig. 4 is
passive with respect to its input and output port. Thus, based
on the results from Section III-B, all the subsystems are
passive, and thus the entire system is passive.

IV. EXPERIMENTAL EVALUATION

A. Experiment Setup

The following experiments serve as the performance eval-
uation of the proposed control framework. The experiment
setup is shown in Fig. 6. Experiments are conducted with a 7-
DoF Franka Emika robot [18]. The local and cloud controller
run on separate PCs with the same hardware configuration
(Intel Core i7-10700 CPU @ 2.90GHz) and operating system
(Ubuntu 20.04 LTS with real-time kernel). The PCs are
connected via Ethernet and located in the same subnet.

An open source tool called tcgui [19] which utilizes the
Linux kernel’s network traffic control and shaping features

Franka
Emika
Robot

Control
Box

Local PC

FCI

Cloud PC

Ethernet

Fig. 6: Experiment setup with Franka Emika Robot; The robot is following
a trajectory on the surface plane while regulating the force in the normal
direction.

is used to simulate the real-world network condition with
variable delay and package loss.

The local PC controls the robot via Franka Control Inter-
face (FCI) at 1 kHz rate. The proposed control framework
offloads the UFIC which also runs at 1 kHz rate into the
cloud PC. The local PC controls the robot by sending joint
torque commands to FCI based on the delayed desired joint
torque commands received from the cloud PC. Meanwhile,
the robot state acquired from FCI is sent back to the cloud
PC. The bi-directional network communication channel be-
tween the local and cloud PCs is established using User
Datagram Protocol (UDP).

The target of the force-impedance controller is set to
follow a circular trajectory with a diameter of 10cm and
a period of 5s in x-y plane and apply a force of 10N on the
z-axis. The stiffness Kx and damping Dx parameters of the
impedance control are set to diag[400, 400, 400, 1, 1, 1]N/m
and diag[10, 10, 10, 0.5, 0.5, 0.5]N · m/s respectively. The
Kp and Ki for the force controller are set to 0.5I and
0.02I , where I is identity matrix. The setup is tuned at the
verge of stability at 50 ± 10ms roundtrip-delay, meanwhile
guarantee a good force tracking performance. The network
delay parameters from 0 to 50ms with a 10ms interval and
20% variance are set through tcgui. The force measurement is
derived from robot joint torque sensors based on the external
force estimation method [20].

B. Results

The energy plot in Fig. 7 illustrate the passivity of the
communication channel. ECC given in (18) is always greater
than zero in all delay scenarios. The accumulated energy also
indicates the energy conservatism of the TDPA, as well as
the energy tank.

The trajectory of the end-effector and the tracking error
are shown in Fig. 8. It is clear that the proposed control
framework is capable of controlling the robot to follow the
desired trajectory pdes. Tracking performance deteriorates
with increase of latency. It is obvious when comparing with
the error without any delay epstd.
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Fig. 7: The observed energy (18) in the communication channel, the positive
energy indicates the communication channel is always passive.

Fig. 8: Position tracking performance. The figure on the left shows the
trajectory and figures on the right shows the tracking error in x and y
direction. The tracking performance is better with less delay.

The force tracking performance is shown in Fig. 9. With
different delay parameters, the proposed framework is able
to control the robot to apply desired force profile fdes. The
force tracking performance also slightly deteriorates with
increasing latency (Fig. 10).

Fig. 9: Force tracking performance. The recorded force is shown in upper
plot and the lower plot shows the tracking error.

C. Discussion

Our experiments shows only up to 50±10ms delay, which
is at the scale of wired communication at distance of 7000km
or currently available commercialized 5G network. However,
the affordable delay can go higher by tuning the controller
parameters.

As the delay increases, the control bandwidth decreases.
To increase the total control bandwidth, it is possible to
only relocate the computational heavy part of the controller,

Fig. 10: Root mean square error of force tracking under different delays.
The error increases as delay increases.

meanwhile the computational light weight part of that can
stay with the local robot. As an example, in this proposed
framework, the gravity compensation, which can be com-
puted in short time, is located on the local controller side. In
this way, even without receiving any control command, the
robot still maintains its basic function.

V. CONCLUSIONS
This article presents a novel framework for relocating

computationally intensive controllers to the cloud in order to
alleviate the burden on local robots. Our experimental results
demonstrate the feasibility of offloading a state-of-the-art
nonlinear controller to the cloud for controlling a tactile
robot. The proposed passivity-based framework ensures the
stability of the system. To maintain passivity in the presence
of time-varying communication delays, methods such as the
energy tank and TDPA are implemented. Future research will
focus on reducing the conservatism of the TDPA to improve
tracking performance, as well as exploring how to allocate
different components of the controller to the local and remote
sides.
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Adaptive Robotic Levering for Recycling Tasks
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Abstract. A common step in autonomous robotic disassembly (recy-
cling) of electronics is levering, which allows the robot to apply greater
forces when removing parts of the devices. In practical applications, the
robot should be able to adapt a levering action to different device types
without an operator specifically recording a trajectory for each device. A
method to generalize the existing levering actions to new devices is thus
needed. In this paper we present a parameterized algorithm for perform-
ing robotic levering using feedback-based control to determine contact
points and a sinusoidal pattern to realize adaptive levering motion. The
algorithm can deal with devices of different shapes. After the initial adap-
tation process, the subsequent executions of the learnt levering action can
be sped up to improve performance.

Keywords: Robotic disassembly · Levering · Force control.

1 Introduction

Recycling faces the problem of small batch sizes and large variety of recycled
items [1,2]. In such circumstances, the effort of robot programming to perform
autonomous disassembly of generic electronics is one of the main reasons for the
slow deployment of robotic-based solutions.

During the disassembly of electronics and other items, various robotic skills
are needed, one of which is levering. Levering is a process whereby mechanical
advantage can be gained using a rigid beam (lever) and a fixed hinge (fulcrum),
which allows a greater force to be exerted on the load (the levered object). Some
operations where levering is needed include removing pins and nails or separating
different device parts. While this is often an easy task for humans as they can
rely on vision, force, and pressure sensing supported by previous experience and
generalisation capabilities, robotic disassembly applications still commonly use
pre-recorded trajectories obtained by learning from demonstration (LfD) [3].
These trajectories, however, cannot be applied to different different electronic
devices without a properly implemented adaptation process.

To perform a generalized levering action, we encode it with a sinusoidal pat-
tern. The execution is controlled by monitoring the external forces and torques
acting on the end-effector. One of the benefits of the proposed framework is
that adaptation can be performed even with noisy vision information, which can
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occur due to the poor lighting conditions and occlusions often encountered in
recycling processes [4]. The proposed algorithm for adaptive levering was imple-
mented on a collaborative Franka Emika Panda robot within a modular robotic
workcell [5] and applied to disassembling heat cost allocators (electronic devices
shown in Fig. 2).

The paper is organized as follows: in Section 2.1, the levering setup is pre-
sented. Section 2.2 describes a search algorithm for automatically detecting con-
tact points which must be known in order to perform a levering action. In Section
2.3 we discuss the application of the sinusoidal pattern to encode a levering ac-
tion. An algorithm for detecting the completion of the levering task based on
force-torque measurements is also presented. In Section 2.4, the adaptation of the
levering movement is explained. The experimental evaluation of our approach
is presented in Section 3. We conclude with a critical discussion and plans to
improve the proposed algorithm.

2 Methodology

The proposed adaptive levering procedure is based on our knowledge about the
geometry of the task.

2.1 Levering setup

Fig. 1a shows a typical levering setup, where the lever is attached to the robot’s
flange. In the following the terms lever and tool are used interchangeably. In
our system, the tool is integrated into qbRobotics Variable Stiffness Gripper.
Subsequently, we refer to the levered object (in our experiments a printed circuit
board) as part. To increase mechanical advantage, the lever is positioned against
the fulcrum.

In Fig. 1b, the object coordinate system (c.s.) (x, y, z axes), the robot flange
c.s. (x0, y0, z0), the tool end c.s. (x1, y1, z1) and the fulcrum c.s. (x2, y2, z2) are
shown. The Tool Center Point (TCP) coincides with the origin of tool end c.s.
The fulcrum c.s. is estimated once the lever establishes a contact with the edge of
the device housing. In our work, we make use of force-torque (FT) measurements
(Fx0, Fy0, Fz0, Mx0, My0, Mz0), which are calculated in the robot flange c.s.

PCB
to be levered

edge of the device housing
(serving as fulcrum)

contact point

robot
flange lever

(a) Elements of the levering process.

x

z
object c. s.

z0

y0

z1

y1

robot flange
coordinate
 system tool end c. s.

z2

y2

fulcrum c. s.

-α 

(b) Coordinate systems used during the
levering process.
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To transform the forces from the flange to the object coordinate system, we
define the rotational matrix between flange and object c.s. as seen in Eq. (24).
The vector of forces fobj = [Fx, Fy, Fz] in object c.s. can be estimated as follows

fobj = Rflange to obj fflange, (1)

Rflange to obj = R⊤
flangeRobj , (2)

where R ∈ R3x3 is a rotation matrix. The torques are not transformed to the
object c.s. since the Mx,0 measurements are used, which are calculated in the
robot flange c.s. To map the robot movements from the robot base c.s. to the
object c.s., we define the rotational transformation between them as

ṗbase = Rbase to obj ṗobj , (3)

Rbase to obj = R⊤
baseRobj . (4)

pbase = pbase to obj +Rbase to objbase
p
obj . (5)

Tbase
obj . (6)

τdesired = τtask + τnullspace + τcoriolis + τadded FT (7)

τtask = J⊤(−Kepos −Develocity) (8)

τadded FT = J⊤fadded (9)

(10)

Tobj
pcb = T−1

objTpcb (11)

Tpcb
final = T−1

pcbTfinal (12)

(13)

Tbase
pcb (14)

(15)

Tbase
final (16)

(17)

(18)

fobj = Rflange
obj fflange, (19)

Rflange
obj = R⊤

flangeRobj , ṗbase = Rbase to obj ṗobj ,(20)

Rbase to obj = R⊤
baseRobj . (21)

pbase = pbase to obj +Rbase to objpobj , (22)

Tbase
obj . (23)

p(t+ tsamp) = p(t) + vtsampRbase to objdp
T (24)

2.2 Fulcrum and part contact point search algorithm

To perform a levering action, the robot must first place the lever into the gap
between the object and the fulcrum. A safe initial position is in the middle of the
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gap. We detect the gap by using 3-D vision. Examples of devices and the gaps
for levering are shown in Fig. 2, where the gaps are marked with a red line. For
some devices, the gaps are quite large, while for others, the gap is very narrow
and challenging to detect.

While vision is sufficiently accurate to approximately position the tool in
the middle of the gap, it is not possible to place the lever at the object based
on vision results only. To establish contact, the robot first moves to a fixed
height above the middle of the gap and then starts moving in the negative z
direction until it hits the bottom of the device housing. The motion is stopped
once the measured force Fz at the tool center point in vertical direction exceeds
a predefined threshold Fmax. The force-torque estimation is performed by the
Franka Emika robot control system using internal joint torque sensors. Based on
the half length of the gap, we determine also the initial inclination of the lever. A
minimal threshold distance dz,min is set beforehand. If it is not exceeded before
detecting contact, we consider that the initial position for levering (the gap)
was incorrectly determined. In this case, we select another initial position with
stochastic search. It is implemented by adding a small random vector ε to the
previous starting point [

x
y

]
=

[
x0

y0

]
+

[
εx
εy

]
, (25)

where the mean of the random vector is set to zero, while the standard deviation
is determined as a fraction of the half gap width of a particular device type (the
red line in Fig. 2).

In the next step, the robot moves along the positive x axis in the object c.s.
until the horizontal force Fx exceeds the force threshold Fmax. At this point the
lever (tool) is in contact with the PCB to be levered out of the device. Next the
robot determines the fulcrum position by performing a rotational motion around
the x axis of the tool end c.s. (positioned at the tip of the lever). The motion is
stopped once the torque Mx,0 exceeds the threshold Mmax, which signifies that
the contact between the lever and the fulcrum has been established.

Fig. 2: Example electronic devices that need to be dismantled. Levering is used
to remove the PCB from the housing.
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2.3 Adaptive levering algorithm

The robot can now proceed with levering out the PCB. However, it is not easy
to manually program a general levering action because the required forces and
amplitude of motion that need to be applied to pry out the PCB cannot be
analytically determined in advance because they depend on the geometry of
the device and its current state of damage. We have therefore developed an
adaptation algorithm that modifies the generic levering action so that it becomes
suitable for the current device that needs to be dismantled.

Humans often use periodic movements when levering, especially when they
do not know the force required to dislodge an object with the lever. In doing so,
they slightly increase the force on the lever in each period.

We generate a single degree-of-freedom (DOF) sinusoidal cycle with an am-
plitude A and cycle time tc, which represents the angle of the end-effector relative
to the initial angle α at which the robot is in contact with the fulcrum and part.
This results in the following trajectory around the x-axis of the fulcrum c.s.

φx,2(t) = g(t) +A sin

(
2πt

tc

)
. (26)

The other two angles around fulcrum coordinate axes are set to φy,2(t) =
φz,2(t) = 0. The levering algorithm is parameterized with the following pa-
rameters:

– initial amplitude of the sinusoidal cycle, set to A = 10◦ in our experiments.
– duration of the sinusoidal cycle, set to tc = 3 s.
– offset increment, set to g(t) = 0.1At/tc.

When the lever is in the initial position, touching both the PCB and the
fulcrum, the execution of the sinusoidal pattern begins. An example of a three
period sinusoidal pattern with a constant amplitude is shown in Fig. 3.
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offset
combination

Fig. 3: Three periods of a sinusoid with an increasing offset g.

During levering, the lever must remain in contact with the part. Velocity-
resolved control is used to ensure that a desired constant force on the part
is maintained [6]. While the angle of the tool is determined by the sinusoidal
pattern, the commanded velocity in the xobj direction is determined based on a
desired preset contact force Fd, the actual current contact force Fx(t) and the
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coefficient kF . The commanded position in the x direction of the object c.s. is
computed by integration

ẋ(t) = kF (Fd − Fx(t)), (27)

x(t+∆t) = x0 + ẋ(t)∆t. (28)

The other two coordinates remain constant during the execution of the levering
movement, i.e. y = y0, z = z0.

The goal of levering is to pry out the PCB out of the device housing. We
therefore let the levering out trajectory (3) running until the success signal (29)
reaches the threshold. Given the time t at which the levering action was success-
ful, we record the amplitude as g(t)+A. Thus next time we can start the levering
action using this amplitude instead of starting from A and gradually increasing
the amplitude. Note that we cannot just start with a very large amplitude as this
could cause unsafe robot movements or uncontrolled motion of the PCB being
levered out. The above adaptation procedure has turned out to be sufficient for
our application. If needed more advanced learning algorithms [7] could be used
to optimize the learnt levering out behavior.

We can use force-torque measurements [Fx,0, Fy,0, Fz,0,Mx,0,My,0,Mz,0]
⊤ at

the robot’s flange to detect when the levering action succeeded at prying out
the PCB. To determine when the PCB (part) has been pried out, we monitor
the torque Mx,0 measured at the robot’s flange. During levering the torque
increases, while a sharp torque drop-off is observed at the moment when the PCB
is dislodged. The levering is successful if the difference between the maximum
and minimum torque value within the width of the signal observation window is
greater than a prespecified threshold Mmax

max
t∈W

{Mx,0(t)} −min
t∈W

{Mx,0(t)} > Mmax, (29)

where W = {tk − tw, . . . , tk}, tk denotes the current sample time, and tw = 1.5s
is the size of the sliding window. This condition can only be triggered while the
lever angle α is decreasing, meaning it’s applying a force to the part. The size
of the sliding window is constant for all device types. The value of the threshold
Mmax is constant for all devices on which we tested the algorithm, however for
novel device types it might require tuning.

When recycling old electronics, devices can be in various states of damage.
It can sometimes happen that the part that needs to be levered out is very
loose and does not provide a large resistance force, so a drop in Mx,0 will not
be detected. Therefore, the secondary condition for levering success is when the
lever angle α becomes higher than a prespecified angle αmax. In our case, shown
in Fig. 1a, the contact point with the part is always lower than the fulcrum in
the object z axis. Thus the levering action is stopped if the lever angle is greater
than the horizontal tool placement (αmax = 0°).

2.4 Levering after adaptation

The time required to perform an operation is particularly important in indus-
trial robotics, where fast cycle times are required to optimize the productivity
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of the robotic workcell. The knowledge about the performed operations can be
used to accelerate the performance. To improve the execution time when the
levering operation is performed several times, we record the robot’s joint trajec-
tory performed during the initial adaptation of the generic levering action. If the
device of the same type is encountered for the second time, we can achieve the
necessary contacts without searching. In addition, the levering trajectory can be
sped up.

To speed up the levering process, we record the initial position at the start
of the levering action and the robot pose reached after establishing the contact
of the tool with the levered part (in our case, the PCB) and the fulcrum (edge
of the device housing), both in object c.s. The highest amplitude of the adapted
levering operation is also recorded. During execution of the adapted levering
operation, the robot can directly move from the initial position to the posture
where the tool establishes contact with the PCB and the fulcrum. Thus we
perform only one movement at a higher speed instead of two. Next the recorded
levering operation defined by Eq. (26) is executed at the maximum recorded
amplitude and at a higher speed, i.e. by decreasing tc. The position trajectory
defined by Eq. (28) is sped up in the same way. The success signal is monitored
as per Section 2.3. When success is not detected, the adaptive levering procedure
defined in Section 2.3 is performed. However, here the search process can start
at the highest previously recorded amplitude.

3 Experimental evaluation

To test the robustness of the algorithm, we tested altogether 5 exemplars of two
different device types and performed the levering for each of them. Some selected
devices are in good condition and require a higher levering force, while some are
already worn out and require less force.

Figs. 4a and 4b show the average Mx,0 torques (which we use as a feedback
signal) observed during the trials of each device type in various states. Initially
the robot is only touching the fulcrum, so the torque values are negative. Upon
contacting the PCB, the torque values rise. It can be seen that particularly for
devices of type 1, the required levering torque differs significantly depending on
the particular device. A torque drop-off is observed at around normalized time
t = 0.8 in Fig. 4a and around t = 0.95 in Fig. 4b, which indicates successful
levering completion.

A comparison of the adaptation (initial) trajectory and the adapted trajec-
tory is shown in Figs. 5a and 5b. Instead of searching for contact, the robot
immediately moves to the previously learned contact point. Fig. 5c shows the
comparison of average execution duration, as well as the standard deviation of
this duration, both for the case of the initial search and after adaptation, for
each of the two device types. It can be seen that after adaptation, the levering
is faster and the duration is deterministic.
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Fig. 4: The torques measured while performing the levering operations.
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Fig. 5: Comparison of initial and adapted trajectories for two device types (a,b)
and duration comparison of initial and adapted levering for both types (c).

4 Conclusion and further work

We presented a parameterized levering algorithm, composed of two sub-tasks,
searching and levering. The search algorithm automatically detects contact points
after the device pose is estimated by vision. Force control is then used to first
establish contact between the tool and the device housing and then position the
tool so that it establishes contact with the part to be pried out and the fulcrum.
Levering is performed using a sinusoidal motion pattern and force-torque feed-
back. After the initial learning step, subsequent executions can be sped-up. We
have demonstrated the algorithm’s robustness to different device types.

With the applied robot, end-effector forces and torques acting are calculated
from internal joint torque measurements, which can be noisy, particularly in
or near singular joint configurations. This can be solved by using a dedicated
force-torque sensor mounted on the end-effector. However, even precise force
measurement cannot assure totally reliable classification of the levering process
outcome. Additional modalities, such as the gripper encoder feedback signal,
could be used to more reliably determine the outcome.
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