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Executive summary
In this deliverable, we present the results of Task 3.5 “Error handling and tactile map con-
struction” and learning of the disassembly task energy. Our results on learning disassembly
primitives are presented in the deliverable D3.2.

We review our contributions to error handling and task energy in the context of robot-
aided recycling of electronic waste, list our scientific publications, and summarize how these
contributions address the challenges of disassembling electronic devices.
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1 Introduction
Conventional methods, such as the "crush-and-separate" technique for recycling electronic
waste, face inherent limitations, especially when dealing with devices containing hazardous
components like batteries. The presence of batteries introduces a fire hazard, necessitating
their removal before further recycling steps can proceed. However, successfully removing bat-
teries relies on disassembling the electronic devices. Automating this disassembly process for
a wide array of electronic devices presents a challenge, primarily due to the diverse nature of
these devices and their varying physical conditions upon disposal. There is an urgent need for
efficient and adaptable solutions to enhance the automation of the disassembly process.

Within the scope of the ReconCycle project, we tackle this challenge under three objectives.
Firstly, we develop an archetypical disassembly solution tailored to a specific device exemplar,
detailing the required steps/actions (e.g., levering, cutting, unscrewing) using a modular and
reconfigurable hardware and software architecture (refer to Objective 1 in the Description
of Action (DoA)). Concurrently, sensory information is integrated with the execution steps to
establish a semantic representation incorporating variables that capture action-relevant details
(refer to Objective 2 in DoA). This semantic representation is crucial for enabling the robot to
autonomously discern the necessary actions for disassembly. Lastly, the robot’s actions undergo
adaptation and learning for each specific device model and the desired disassembly sequence
(refer to Objective 3 in DoA).

Previous reports have detailed how the modularity and reconfigurability of the developed
work cell enable rapid and efficient layout alterations (refer to deliverables D1.1 and D1.2).
This flexibility, combined with adaptable soft end-effectors (refer to deliverables D4.1, D4.2,
and D4.3), facilitates the handling of various device types within the same work cell.

The reconfigurable hardware is complemented by a modular and hierarchical software ar-
chitecture, divided into three levels: task-level programming (sequencing robotic skills), pro-
gramming and acquisition of robotic skills (e.g., levering, unscrewing, pushing, pulling), and
low-level control, including skill adaptation. To accommodate the variability of devices within
the same device family, we also employ vision-based scene analysis and action prediction (re-
fer to deliverables D2.1 and D2.2), as well as learning disassembly primitives and adapting
control parameters (refer to deliverable D3.2). Additionally, error-handling mechanisms are
implemented to sustain high-quality performance in the work cell, as described in this report.

These capabilities have been successfully demonstrated in use-case-related reports. In de-
liverable D5.2, we presented an archetypical solution for the disassembly of a specific heat cost
allocator (HCA) device, laying the foundation for a more generalized pipeline for disassembling
different models of HCAs, as outlined in D5.4. The proposed pipeline leverages work cell re-
configuration, action prediction, and skill adaptation. Furthermore, in deliverable D5.5, we
showcased the application of this process to another device type—smoke detectors.

This report summarizes our findings on error handling and learning of the disassembly
skill parameters. Section 2 describes how we extend our previous skill definition framework
by integrating a fast behavior tree to enable error recovery while executing disassembly skill
primitives. Later, in Section 3, we present our flexible control method, which allows the robot to
have the option of error recovery from unstable behavior. Additionally, we introduce learning
of task energy to sustain a high-quality performance in the low-level control. Finally, the
corresponding publications are given in the appendix.
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2 1 kHz behavior tree for self-adaptable tactile skills
In the context of recycling, the protocol for recycling the battery from a heat cost allocator is:
(i) placing the tool in contact with the gap (pre-contact and contact initiation); (ii) pushing
the pin; (iii) levering the lid and PCB, and (iv) separating the battery. In a simplified form,
the requirements of the dismantling protocol are (i) contact initiation, going to the gap with a
specific orientation; (ii) establishing contact, tool alignment with the desired contact (gap); and
(iii) manipulation: force and motion profile. Each step in this protocol requires establishing and
aligning the contact between the robotic end-effector and the piece. Nevertheless, contact state
estimation and establishment are prone to errors due to perception uncertainties in vision,
proprioceptive sensors of the robots, or even undesired contacts. Central to this problem is
developing versatile robot skills that are adaptable to new task requirements with minimal
human intervention and reprogramming.

The real-time adaptability sequence of the disassembly primitives is an option for error
recovery, aiding the robot know when and how to adjust motion strategies to adapt to unknown
physical constraints rather than indiscriminately applying force. To address this problem, we
propose to extend our skill definition framework with a Behavior Tree (BT) (see Fig. 1) based
primitive switching mechanism, which uses high-frequency tactile information for contact state
estimation.

The contributions of real-time error handling for the skill execution using a 1 kHz behavior
tree framework in the skill execution level can be summarized as follows:

• Real-time contact state estimator: We introduce a real-time contact state estimator for
insertion tasks, leveraging time series anomaly detection and tactile information.

Figure 1: Skill Overview. The upper block depicts our previous skill formalism in deliverable
D3.1 as a Finite State Machine, while the lower one shows the new proposed skill with a
Behavior Tree structure. The yellow nodes represent condition nodes, while the green ones
indicate action nodes.
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• Real-time behavior tree: We incorporate this contact state estimator into our existing
insertion skill, revamping it using a behavior tree framework operating at a 1 kHz fre-
quency.

• Experimental validation: We assess the performance of the proposed method by com-
paring it to our previous approach across various tool alignments and contact initiation,
demonstrating its strong efficacy and showing evidence that it can improve learning effi-
ciency in robustness and skill performance. With the new skill framework, the execution
time of the final learned skill on our tested objects is almost halved (roughly 50%).

• Transferability test: We showcase that the proposed method surpasses our previous work
with a significantly enhanced transferability, i.e., a higher success rate in zero-shot trans-
fers and a more rapid, robust convergence during fine-tuning.

Our 1 kHz Behaviour Tree for Tactile Skills will be presented at the upcoming ICRA 2024 [6].

3 Learning of the task energy for stable and high-performance dis-
assembly skill execution

Robotic manipulation presents many challenges, particularly in adapting predefined contact-
rich skills to diverse contexts, as encountered in real-world operations. Therefore, the robot
controllers should enable flexibility and adaptability to the undesired contacts for fast error re-
covery at the low level. To control the skills in ReconCycle, we use the Unified Force-Impedance
Control approach, as introduced in the deliverables D3.1 and D3.2 [1, 2]. Identifying poten-
tial instabilities arising from stiffness variations and force regulations to ensure stability even
amidst dynamic changes, virtual energy tanks are integrated to guarantee stability. The sta-
bility analysis and virtual energy tank installation for the robotic tactile skills is submitted as
a publication to IROS2024 and is currently under review [3]. Even though stability is proven,
this does not necessarily mean the task can be fulfilled as desired. If energy tanks are not
loaded with sufficient energy, the force controller will be deactivated, or the impedance control
will be transited to compliance control. If this happens during manipulation, the intended task
goal will not be achieved since the force profile cannot be regulated accordingly or the desired
trajectory is not followed correctly. For solving this problem, the concept of initial task energy
Etank(0) is used. Etank(0) is defined as the minimal energy to be initially stored in the tanks
for fulfilling all requirements of a disassembly skill. This task energy or an estimated lower
bound needs to be known before execution to determine if stability and correct task execution
and performance are to be achieved. The most straightforward strategy would be using en-
ergy that is practically high enough. However, for improved safety or process monitoring, it
would be beneficial to leverage i.) model-based, ii.) data-driven, or iii.) model-informed hybrid
approaches.

Here, one may set Etank(0) to a constant to fulfill the desired task. However, this leads
us to fine-tune it for each task and the corresponding working surface material, geometry, etc.
Additionally, when, by default, we set it to a large number, the robot may be loaded with an
unnecessarily large amount of energy, leading to a waste of energy in case of instability. So,
ideally, after finishing the task at t = tfinal, the tank should end up with ϵ amount of energy.
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The robot controller fcntr spends the energy of
∫ tfinal
0

ẋTfcntr dτ when moving with ẋ.

Etank(tfinal) = Etank(0)−
∫ tfinal

0

ẋTfcntr dτ = ϵ , (1)

Etank(0) =

∫ tfinal

0

ẋTfcntr dτ + ϵ . (2)

One option to overcome this issue is to learn the initial tank energy or, in other words,
the task energy. Regarding learning, energy budgets are adjusted to accommodate specific
contact behavior, as shown in Alg.1. Learning algorithms are implemented to adapt energy
budgets for the electronic screwdriver and levering based on observed contact behavior during
the execution.

Algorithm 1: Data-driven learning by CMA-ES-based RL
Input : πinit = Etank(0)
Output : π
Initialize: generate initial multi-dimensional Gaussian distribution Xinit ∼ N (µ, σ2)

based on initial policy πinit, k = 1
while k < kmax orσ

2 > σ2
min do

if sampling then
if k = 1 then

generate πnew based on Xinit;
else

read πold, Jc;
generate Xnew based on Xold;
πold, Jc;
generate πnew with updated Xnew;

roll-out generated πnew;
evaluate πnew and generate costs J based on cost function;
πold ← πnew;
Xold ← Xnew;
k = k + 1;

An observation node provides initial motion policy πinit on the working surface for the
learning module to initialize Gaussian distribution Xinit. And for the learning algorithm, CMA-
ES is implemented under the hood. One significant advantage of a random sampling algorithm,
i.e., CMA-ES, is fast convergence, which makes it well-suited for policy search of such tactile
manipulation skills. The working principle of CMA-ES can be found in Algorithm 1. With
proper initial condition and stopping conditions, i.e., max episode kmax and minimum covariance
σ2
min, the convergence of samples can be achieved within a short amount of time.

When the sampling request is received, the CMA-ES server node produces one episode
of samples based on the current distribution and feeds samples into the robot for execution.
During the execution of the samples, the corresponding cost is evaluated based on the cost
function and used as feedback. After executing a whole episode, the distribution is updated
with the old samples and costs of the current episode. Our cost function Jc is the energy left
in the tank at the end of the episode Etank(tfinal).
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kinesthetic guiding
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occurs, based on the current
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a suitable policy

Error - process
stops

Manual error
recovery
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Demonstration in
changed situation

Error - automatic
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Figure 2: A simplified exception-handling workflow.

4 Learning of exception strategies for error-handling
Many unexpected events may arise during robot disassembly, for which the robot system may
not have a predefined scenario. Possible causes include deviations in the geometry of work-pieces
or the model, imprecise grasping, discrepancies in positioning, etc. Given the sheer number
of potential causes for unintended behavior, it is generally not feasible to anticipate them all.
Moreover, since individual unforeseen events occur relatively rarely, it would not be efficient
to do so. A well-defined and flexible exception-handling process is crucial to address these
unexpected events. While integrating fixed search-and-rescue patterns into existing control
policies or policy adaptation can address some of these cases, human-operator intervention is
often needed to resolve and resume the operation. However, in most exception-handling setups,
the system does not learn from these interventions, and if a similar situation occurs again, it
requires human intervention.

We developed a novel framework where the robot learns from the intervention of the human
operator and becomes capable of autonomously resolving errors in the future. Our framework is
based on determining the context of an exception, kinesthetic guidance, and statistical learning
to enable learning of exception strategies and later autonomous resolution of similar exceptions,
as illustrated in Fig. 2. In general, it is crucial to understand or at least classify the cause of
an error to choose an appropriate strategy to correct it.

Understanding the causes of errors is a complex process that robotic systems cannot fully
perform. Therefore, in our system, we use implicit classification based on sensor data describing
the circumstances of the failure. This process is called context determination, described in a
journal paper [5].

The evaluation was done on two examples of assembly operations. However, the context
determination was based on input data from force-torque and vision sensors, typically found
in disassembly setups. We linked the context description to the human operator’s actions to
resolve the situation and the demonstrations to proceed in the changed situation. Over time,
a database of demonstrated actions and the associated context is built, and using statistical
learning [4], the system was able to generate appropriate actions in unexpected situations.
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1 kHz Behavior Tree for Self-adaptable Tactile Insertion

Yansong Wu1, Fan Wu1, Lingyun Chen1, Kejia Chen1, Samuel Schneider1, Lars Johannsmeier2,
Zhenshan Bing1, Fares J. Abu-Dakka3, Alois Knoll1, Sami Haddadin1

Abstract— Insertion is an essential skill for robots in both
modern manufacturing and services robotics. In our previous
study, we proposed an insertion skill framework based on force-
domain wiggle motion. The main limitation of this method
lies in the robot’s inability to adjust its behavior according
to changing contact state during interaction. In this paper,
we extend the skill formalism by incorporating a behavior
tree-based primitive switching mechanism that leverages high-
frequency tactile data for the estimation of contact state. The
efficacy of our proposed framework is validated with a series
of experiments that involve the execution of tightly constrained
peg-in-hole tasks. The experiment results demonstrate a signifi-
cant improvement in performance, characterized by reduced ex-
ecution time, heightened robustness, and superior adaptability
when confronted with unknown tasks. Moreover, in the context
of transfer learning, our paper provides empirical evidence
indicating that the proposed skill framework contributes to
enhanced transferability across distinct operational contexts
and tasks.

I. INTRODUCTION

Since the early stage of automatons and industrial robots,
manufacturing has been one of the most important sectors
motivating and witnessing the evolution of robotics [1].
Transitioning from Industry 4.0 to Industry 5.0 [2], robotic
assembly meets challenges from flexible manufacturing’s
rise, requiring efficient small batch production management
in automated factories. This brings the research focus from
implementing robots on repetitive tedious tasks, be it simple
pick-and-place, or welding, grinding, assembly, in a struc-
tured environment to an unstructured dynamic environment,
even with humans in their vicinity to collaborate. Central
to this problem is how to develop versatile robot skills that
are adaptable to new task requirements with minimal human
intervention and reprogramming.

Among many skills for contact-rich manipulation, Inser-
tion, also known as Peg-in-Hole (as depicted in Fig. 1)
is of paramount importance and has received numerous

1The authors are with the Chair of Robotics and Systems Intelligence,
MIRMI - Munich Institute of Robotics and Machine Intelligence, Technical
University of Munich, Germany. f.wu@tum.de The authors acknowl-
edge the financial support by the Bavarian State Ministry for Economic
Affairs, Regional Development and Energy (StMWi) for the Lighthouse
Initiative KI.FABRIK (Phase 1: Infrastructure as well as the research and
development program under grant no. DIK0249). In addition to the support
by euROBIN project under grant agreement No. 101070596, by the German
Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of
Germany’s Excellence Strategy – EXC 2050/1 – Project ID 390696704
– Cluster of Excellence “Centre for Tactile Internet with Human-in-the-
Loop” (CeTI) of Technische Universität Dresden, by the Federal Ministry
of Education and Research of Germany (BMBF) in the programme of
”Souverän. Digital. Vernetzt.” Joint project 6G-life, project identification
number 16KISK002 and by the European Union’s Horizon 2020 research
and innovation programme as part of the project ReconCycle under grant
no. 871352. Note that S. Haddadin had a potential conflict of interest as a
shareholder of Franka Emika GmbH.

2Franka Robotics GmbH, Germany.
3Electronic and Informatics Department, Faculty of Engineering, Mon-

dragon Unibertsitatea, Bilbao, Spain.

(d)

(a) (b)

(c)

Fig. 1: Experiment setup for Tactile Insertion. The left
figure shows the overall setup. Objects used in this work
are: (a) Object A: a cuboid with the geometry size of
35mm × 25mm × 60mm, clearance is 0.1mm in each
dimension, (b) Object B: a cylinder length of 50mm and
diameter of 40mm, clearance is 0.05mm, (c) Object C:
a cylinder with length of 50mm and diameter of 30mm,
clearance is 0.025mm, (d) Object D: a 37mm long key.

research efforts recently [3]–[19]. Admittedly, a myriad of
recent works [3]–[10], [14]–[19] take the learning-based
approach in contrast to those exploiting human expert
knowledge to handcraft solutions [11]–[13]. The learning-
based methods span three main categories: (i) end-to-end
(deep) reinforcement learning (RL), whether taking force
signals [5], [7], [16] or visuo-tactile sensing [9], [15] into
model inputs; (ii) imitation learning or learning from demon-
stration (LfD) [3], [4], [6], [17]; and (iii) parameterized skill
learning [8], [10]. In the line of deep RL, training a general
model with meta-reinforcement learning [14], [18], [20], [21]
seems promising to acquire highly versatile and transferable
insertion skills. Nevertheless, the lack of sample efficiency,
safety guarantees and interpretability are imperatives to its
real-world deployment. Imitation learning as a more sample-
efficient approach has been adopted widely in industrial
applications, combined with RL to further optimize control
policies. However, learning skills constrained by changing
environments as well as capable of real-time adaptation based
on tactile information is still an open problem.

Compared to learning-based methods, off-the-shelf solu-
tions [22] programmed by human experts are still more
widely used in real manufacturing, which has well-structured
environments but requires high precision manipulation. They
often outperform learning-based methods in certain as-
pects [19]. In the context of robotic insertion, most pop-
ular approaches [11]–[13] usually feature force-based spiral
search strategies and a skill framework consisting of multiple
phases or primitives. Multi-phase skill formalism is also used
in [8], [10] with a force-based spiral search primitive termed
as “Wiggle” motion, which enables learning in reduced
parameter space, resulting in much higher sample efficiency
compared to deep RL approaches.

The successful use of spiral force search as demonstrated
in [13] replies on the use of active compliance, which
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resonates with the old idea of adapting to physical in-
teraction rather than overcoming it, first implemented by
McCallion et al. [23] in a physical compliance device for
an industrial insertion task. However, most previous works
focus only on searching (approximately) optimal solutions,
either by learning or human programming, to solve the
hole searching problem. The effectiveness, performance and
transferability of the insertion skill, in terms of adapting to
physical interaction (in the presence of imperfect perception
and changing environment constraints) during the process
when the peg is being pushed into the hole, remains an under-
explored question. This is in part due to the fact that tight-
clearance industrial assembly tasks [5] are rarely investigated
in the research community. On the contrary, many studies are
conducted with “generous” clearance tasks, which inevitably
biases on hole searching and mitigates the importance of
adaptability and failure recovering during the whole process
of insertion.

In our previous works [8], [19], we demonstrated the
feasibility of replicating human-like wiggling with feed-
forward force in robotic insertion tasks. However, this ap-
proach is still far from achieving human performance in
terms of real-time adaptability when conducting new tasks.
This is due to the fact that humans know when and how
to adjust motion strategies to adapt to unknown physical
constraints, rather than indiscriminately applying force. To
address this problem, in this paper, we propose to extend
the skill framework with a Behavior Tree (BT) [24] based
primitive switching mechanism, which uses high-frequency
tactile information for contact state estimation.

The contributions of this work can be summarized as
follows:

1) Real-time contact state estimator: We introduce a real-
time contact state estimator for insertion tasks, leverag-
ing time series anomaly detection and tactile informa-
tion.

2) Real-time behavior tree: We incorporate this contact
state estimator into our existing insertion skill, revamp-
ing it using a behavior tree framework operating at a 1
kHz frequency.

3) Experimental validation: We assess the performance of
the proposed method by comparing it to our previous
approach across various insertion tasks, demonstrating
its strong efficacy and showing evidence that it can im-
prove learning efficiency in terms of robustness and skill
performance. With the new skill framework, execution
time of final learned skill on our tested objects is almost
halved (roughly 50% reduction).

4) Transferability test: We showcase that the proposed
method surpasses our previous work with a significantly
enhanced transferability, i.e., a clearly higher success
rate in zero-shot transfers and a more rapid, robust
convergence during fine-tuning.

II. METHODS

A. Adaptive Impedance control with Feed-forward Force

Consider a torque-controlled robot with n-Degrees of
Freedom, the second-order rigid body dynamics is written
as:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τm + τext (1)

where q ∈ Rn is the joint position. M(q) ∈ Rn×n

corresponds to the mass matrix, C(q, q̇) ∈ Rn×n is the
Coriolis matrix and g(q) ∈ Rn is the gravity vector. The
motor torque (control input) and external torque are denoted
by τm ∈ Rn and τext ∈ Rn, respectively. The adaptive
impedance control law with feed-forward force profile is
defined as [25]:

τm(t) =J(q)T[Fff (t) +K(t)e+Dė

+M(q)ẍd +C(q, q̇)ẋd] + g(q),
(2)

where Fff (t) compensates the feed-forward wrench, while
xd is the desired trajectory. e = xd − x and ė = ẋd − ẋ
are the position and velocity error, respectively. K(t) and D
are stiffness and damping matrices in Cartesian space. J(q)
represents the robot Jacobian matrix. This control law is used
in all motion primitives in the skill framework, which will
be introduced below.

contactInit

Error

approach

∅

?

→Finish

↻ContactApproach

? Push

Wiggle

Sequence

Fallback

Repeat

Root Ticked with 1000Hz

Aligned

smart 

wiggle

Fig. 2: Skill Overview. The upper block depicts our previous
skill [8] formalism structured as a Finite State Machine,
while the lower one shows the new proposed skill with a
Behavior Tree structure. The yellow nodes represent condi-
tion nodes, while the green ones indicate action nodes.

B. Insertion Skill Design

In contrast to [8], as shown in Fig. 2, the architecture
of the skill framework proposed in this paper shifts from a
sequential Finite State Machine to a Behavior Tree of depth
5, which iterates at 1 kHz frequency to decide which type of
actions is executed based on real-time contact state estima-
tion. Every 1ms an enabling signal is fired out from the Root
node to its leaf nodes. These triggering signals, also called
“ticks”, traverse recursively in the tree following the Depth
First Search rule. The continual generation of ticks and their
tree traversal result in a closed loop execution. Actions are
executed and aborted according to the ticks’ traversal, which
depends on the leaf nodes’ return statuses [24].
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From the beginning of the task, the robot gripper moves
from its initial position towards the hole until contact es-
tablished. In this Pre-insertion phase only Approach and
Contact primitives are used, and their action nodes are
almost surely executed in sequence by applying the control
law Eq. (2) with Fff (t) = 0 to follow the desired trajectory
xd.

After establishing contact, the tick in BT traverses through
the Repeat node at Depth 3, which triggers its left child
node to estimate contact state (see Sec. II-C.3 below) and
evaluate how the peg is aligned with the hole. If the condition
“Aligned == Yes” is fulfilled, the fallback node returns suc-
cess and its sibling node, the Push action node, is executed,
whereas Wiggle is executed whenever the estimation of the
alignment returns false. Wiggle and Push are implemented
based on the control law Eq. (2). In Wiggle, Fff (t) follows a
designed trajectory from motion generator; In Push, Fff (t)
maintains the last updated value.

In our previous works [8], [19], the Lissajous curve-
shaped feed-forward force Fff (t) is leveraged to mimic the
human’s periodic wiggle motion. The desired force trajectory
in direction i is formulated as:

Fff,i(t) = ai · sin(2πfit+ φi) (3)

where ai, fi and φi refer to the amplitude, frequency and
phase, respectively. The subscript i refers to the direction in
the range x, y, rx, ry, rz of the End-Effector (EE) frame. The
applied force in the z direction (main assembly direction)
maintains a constant value az .

The feasibility and efficiency of applying feed-forward
force to mimic the human’s wiggle motion in a robotic
insertion task have been demonstrated in [8], [19]. The
advantages are twofold: On the one hand, it can search and
align the hole before inserting the peg; On the other hand,
during the Insertion phase, wiggling effectively help the peg
get out of a stuck state.

However, by further observing how humans perform inser-
tion tasks on tight-clearance objects, humans tend to employ
wiggling motions only when necessary, which coincides
to the minimum intervention principle (in a loose sense).
From the perspective of energy, the optimal solution while
achieving task goal during tight-tolerance insertion, should
exert minimal energy to overcome friction and recover from
anomaly, i.e., the peg getting stuck due to misalignment
with physical constraints. Moreover, humans have remark-
able ability to generalize their manipulation skills to unseen
new tasks without new training. For instance, given a new
difficult tight-clearance peg-in-hole task, many people would
naturally utilize force spiral search or wiggle motion for
contact alignment and failure recovering during insertion. In
other words, humans can intentionally self-adapt tactile skill
to tackle complex novel tasks. In philosophical terminology,
this intentional self-adaptability exemplifies a meta-agentive
capability, that intervenes in and influences other agentive
processes.

Based on the above observation and reasoning, we pos-
tulate that “mimicking” such meta-agentive ability is the
key to realize robot skills that are highly transferable to
new tasks with various environment constraints. Without
over-complicating the problem by taking less interpretable

Algorithm 1 Real-time Contact State Estimation

z ← 0, s← Searching ▷ initial
record current xz as xz0

for any new data xz do
if s == Searching then

if xz − xz0 > ϵ then
s← Stuck ▷ searching success
z ← z(xz)

end if
else

z ← z(xz)
if s == Stuck & z > 3 then

s← Unstuck ▷ Stuck to Unstuck
if fresz is local maximum then

s← Aligned & vref ← αv ▷ alignment
end if

else if s ̸= Stuck & v < vref then
s← Stuck ▷ get stuck

end if
end if
add xz into z-score detection buffer

end for

meta-RL approach, in this paper we propose to incorporate
human knowledge into skill framework by designing a simple
yet effective behavior tree-based skill formalism to achieve
dynamic and reactive self-adaptable behavior in insertion
skills.

C. Real-time Contact State Estimation
1) data pre-processing: To mitigate the impact of high-

frequency noises, the robot states series X is filtered by
convolution with a Blackman window [26], [27]:

w[n] = 0.42− 0.5 · cos
(
2π

n

N

)
+ 0.08 · cos

(
4π

n

N

)
(4)

w[n] =
w[n]∑N
i=1 w[i]

(5)

X̃ = X ∗w (6)

where w[n] is the n-th element in a Blackman window of
length N = 50. X and X̃ refer to the measured and filtered
time series, respectively.

2) moving z-score based “Unstuck” state detection: The
moving z-score is a commonly employed methodology for
quantifying the degree of anomaly exhibited by individual
data points within a time series [28]. Applying it to xz (the
z-position of the EE’s frame w.r.t. the task frame), the z-score
value of the new coming measured point is:

z =
xz − µ

σ
(7)

where the mean µ and standard deviation σ are calculated
over the previous observations.1 Grounded in the concept of
statistical dispersion, if the z-score associated with a newly
acquired sample surpasses three, it warrants classification
as an anomalous data point, with a confidence level of
97.7%. As illustrated in the third row of Fig. 3, the EE’s

1In this work, measurements from the last 1 second are used as reference.
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z-position in the initial searching phase and when the object
is stuck closely approximates a horizontal line. As the
object transitions from a stuck state to becoming unstuck,
it undergoes a rapid upward elevation. This turning point
can be effectively captured via anomaly detection.

3) contact state estimation: As depicted in algorithm 1,
the contact estimation may output different candidate states,
i.e., “Searching” indicates the robot is in the process of
locating the hole; “Stuck” means the insertion object gets
stuck; “Unstuck” represents the object is moving along the
insertion direction and “Aligned” signs that the object is
currently aligned with the insertion hole. Due to the existence
of clearance, a misaligned object may also move in the
insertion direction with a pressing force. For such kind of
object, sequenced wiggle motion helps it get closer to the
perfect aligned pose. Compared to a misaligned object, an
aligned object experiences less resistance under the same
conditions. Therefore, our contact detector estimates the
alignment moment by identifying the local maximum of
fresz , namely the resistance force Fres in the z-direction.

[F T
r , τT

r ]
T = J−T

body(τm −C (q, q̇) q̇ − g (q) ) (8)

Fres = Fr − Fext (9)

where Fr and τr refer to the force and torque exerted by
the robot on the insertion object. Jbody represents the body
Jacobian, relating joint velocities to the EE twist expressed
in the body frame (a frame at the EE). Fext indicates the
estimated external force based on the joint torques.

As the fresz reaches a local minimum, the corresponding
velocity in the z-direction is multiplied by a discount factor
(α = 0.1) to generate a reference speed. When the object’s
velocity drops below this threshold, the system state is re-
evaluated as “Stuck”.

D. Evolution Strategy based Learning Algorithm

1) Exploration and evaluation: The exploration phase
generates K unconstrained perturbations in skill parameter
space for K roll-outs. These perturbations are assumed to
obey the multi-variate Gaussian distribution ξ̃k ∼ N (ξ,Σϵ),
where k = 1, 2, ...,K and ξ indicates the centre of the
distribution and Σϵ indicates the covariance matrix. Then,
the box constraints ξmax and ξmin are applied while mapping
the perturbation ξ̃k to the parameter vector ξk (detailed
in [8]), which represents the whole policy of the k-th roll-out.

ξk = min(max(ξ̃k, ξmin), ξmax) (10)

where min and max are evaluated element-wise. The per-
formance of each roll-out is evaluated with the cost function:

J =
texe
tmax

+ Φ · ed (11)

It includes the following aspects: (i) Execution time: texe
and tmax represent the execution time and time limitation;
(ii) Task accomplishment: The Boolean value Φ equals to 0
for a completed handover and 1 for an unsuccessful trial; and
(iii) Average distance: The average distance d between the
EE and insertion hole indicates the quality of an unsuccessful
sample. The larger the value, the further it deviates from a
successful trial, vice versa.

2) Policy update: The policy update steps (12)-(16) are
based on the PIBB algorithm introduced by [29].

J̃k =
Jk −min({Jk})

max({Jk})−min({Jk})
(12)

Pk =
exp

(
−cJ̃k

)
∑K

i=1 exp
(
−cJ̃i

) (13)

ξ ←
K∑

k=1

Pkξk (14)

Σtemp
ϵ =

K∑
k=1

Pk(ξk − ξ)(ξk − ξ)T (15)

Σϵ ← Σϵ + γ(Σtemp
ϵ −Σϵ) (16)

First, the cost Jk is normalized according to their maximum
and minimum by (12). The normalized cost J̃k is used to
calculate probability Pk for k-th roll-out according to (13),
where c > 0 is a constant. Then, the distribution is updated,
according to the weighted averaging rule (14)-(16), where
γ ∈ (0, 1] is the applied decate factor while updating the
covariance matrix.2

III. EXPERIMENT

To evaluate our proposed method, we designed three ex-
periments to: (i) demonstrate the performance improvement
of our proposed skill framework with behavior tree and con-
tact state estimation over that without them, (ii) validate the
learning performance, and (iii) investigate the transferability.
The original skill without behavior tree and state estimation
is utilized as our comparing baseline. The experiments are
implemented with a 7-DoF franka robot [30] and 4 tight-
clearance insertion objects, as illustrated in Fig. 1.

A. Skill Performance

To validate the efficiency of our proposed method, we
conducted a series of insertion tasks with our proposed
methods and compared them against the baseline. These
tasks were carried out using Object A, and the process
was repeated 100 times with different parameters. These
parameters are sampled from a Gaussian distribution, gen-
erated based on successful samples obtained when using
the baseline executing various insertion tasks. The results
indicate: (i) Our proposed method achieves a significantly
improved success rate of 30%, whereas the original skill
yields a success rate of 21%. (ii) For completed trials, an
8.9% reduction in overall execution time is observed.

TABLE I: Parameters value

Parameter Value
Kxyz [N/m] 523.907
Kr [N/rad] 24.984
[ax, ay , az ] [N] [1.792, 2.360, 4.931]
[arx, ary , arz ] [N/rad] [0.766, 0.906, 3.228]
[φx, φy ] [-0.078, 0.776]
[φrx, φry , φrz ] [-1.562, 0.610, -0.119]
[fx, fy ] [2.179, 1.561]
[frx, fry , frz ] [0.718, 0.720, 0.143]

2In this work, c = 10 and γ = 0.9.
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Fig. 3: Skill performance. The figures on the left correspond to the insertion with baseline, whereas the right figures
demonstrate the insertion with our proposed method. Both of them are conducted with identical parameters (detailed in
Table I). In these figures, specific time points are marked for reference: T1 signifies the moment when the object transitions
from a Stuck to an Unstuck state; T2 represents the time point when the object is estimated in an Align state; T3 denotes
the complication time of our proposed method (the end time in the right subgroups).
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Fig. 4: Learning performance. (a) learning curve of Object A, (b) measured external force, torque and execution time of
final result on Object A, (c) learning curve of Object C, (d) measured external force, torque and execution time of final
result on Object C.

To gain a comprehensive understanding of the influence of
the behavior tree and contact state detection on the Insertion
phase, the results executed with the parameters in Table I are
visualized in Fig. 3 (The parameters’ meaning is detailed in
[8]). The figures in the first two rows depict the estimated
wrench Fr and τr exerted on the object by the robot.
Additionally, the green line represents the external force
exerted on the object by the environment. The corresponding
position and speed of the EE in z-axis are illustrated in the
last two rows, respectively. Note that, all the measurements
in this figure are the pre-processed with Eq. (6).

In the initial stage (before T2), the performance of both
skills exhibits significant similarities. At the moment T1, our
proposed contact estimator detects a critical event: The object
successfully transitions from a Stuck to an Unstuck state
after locating the insertion hole. Following this, at T2, our
proposed method stops its wiggle motion when it meets an
optimally aligned gesture, identified as a local maximum of
the resultant force fresz . Subsequently, the robot transitions
its action mode to pushing with a constant feed-forward force
and accomplishes the task at time T3; In contrast, the baseline
keeps wiggling naively after T2 and misses the achieved
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aligned position, resulting in a prolonged execution time.

B. Learning Performance
In this section, we employ the evolutionary strategy de-

tailed in Section II to train the robot solving insertion task,
utilizing the Object A and Object C, as depicted in Fig. 1,
respectively. Each training process is repeated 10 times. The
costs during the training process are presented in the left part
of Fig. 4. The red line represents the mean of the training
processes based on the baseline, while the blue line indicates
that of our proposed method. The shadow area represents
the corresponding variance. Additionally, a horizontal dashed
line shows the boundary to distinguish between successful
and unsuccessful trials. Evaluating the overall performance
of the Pre-Insertion and Insertion phases with Eq. (11),
the proposed method demonstrates a modest improvement,
characterized by reduced cost and variance. However, it is
worth highlighting that the Pre-Insertion phase is identical
for both methods, with the sole distinction arising during
the Insertion phase. Therefore, the right-hand figures provide
a detailed analysis of the Insertion phase, demonstrating
a marked improvement in execution speed while ensuring
effective limiting of the contact force. Specifically, the aver-
age execution speeds for the tasks improved by 52.9% and
45.6%, respectively.

C. Transferability
In this section, we assess the transferability of our method

by examining its zero-shot transfer and fine-tuning perfor-
mances.

1) zero-shot transfer: We apply the policies (skills with
optimal parameters) learned from Object A to tasks for
which it was not explicitly trained, i.e., the insertion of
Objects B, C, and D. This procedure is executed 100 times
using the policies derived from both methods (in Sec. III-
B). The results are depicted in Fig. 5. For each object, the
policy derived from our proposed method, represented in
blue, consistently demonstrates significantly higher success
rates in comparison to the baseline method, depicted in red,
resulting in an overall enhancement in the success rate by
22.7%.
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Fig. 5: Success rate while transferring the models learned
with Object A to the other objects shown in Fig.1.

2) fine-tuning: Subsequently, we utilize the policies de-
veloped for Object A as pre-trained models and proceed to
fine-tune them for the insertion tasks involving Objects B,
C, and D. As depicted in Fig. 6, our method demonstrates
notable efficiency and robustness improvements. Specifically,
for Object B, our approach not only converges 33.3% faster
than the baseline but also exhibits a 49.4% reduction in
performance’s variance. Regarding Object C, our approach

consistently outperforms the baseline throughout the learning
process. Notably, for Object D (characterized by its unique
type and complex geometry), our method reaches conver-
gence 1.7 times quicker than the baseline, with a notable
66.2% reduction in outcome variance. These experimental
outcomes affirm the superior transferability of our newly
proposed skill framework, primarily due to the improved
self-adaptability by the integration of contact state estimator
and the BT structure.
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Fig. 6: Fine-tuning performances. Shown in figure are:
(a) Object B, (b) Object C, and (c) Object D. The experiment
is conducted five times, with the solid line depicting the mean
values and the shaded area indicating the variance.

IV. CONCLUSION

This paper enhanced our precious framework by incor-
porating behavior tree and contact state estimation. The
efficiency of our proposed framework has been validated
with various tight-clearance insertion tasks. The experiment
results showcased a substantial improvement with reduced
execution time while ensuring controlled contact forces. Ad-
ditionally, it demonstrated enhanced robustness and superior
performance when learning unknown tasks. Furthermore, the
transfer learning experiment implies that our extended skill
framework can effectively enhance the skill transferability,
by improving the model’s self-adaptability through the pro-
posed contact state estimator and 1 kHz BT structure. In
future works, we will conduct extensive empirical research
on investigating skill transfer learning involving a wider
range of objects.
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Visuo-Tactile Exploration of Unknown Rigid 3D Curvatures by
Vision-Augmented Unified Force-Impedance Control

Kübra Karacan, Anran Zhang, Hamid Sadeghian, Fan Wu, and Sami Haddadin

Abstract— Despite recent advancements in torque-controlled
tactile robots, integrating them into manufacturing settings
remains challenging, particularly in complex environments.
Simplifying robotic skill programming for non-experts is crucial
for increasing robot deployment in manufacturing. This work
proposes an innovative approach, Vision-Augmented Unified
Force-Impedance Control (VA-UFIC), aimed at intuitive visuo-
tactile exploration of unknown 3D curvatures. VA-UFIC stands
out by seamlessly integrating vision and tactile data, enabling
the exploration of diverse contact shapes in three dimensions,
including point contacts, flat contacts with concave and convex
curvatures, and scenarios involving contact loss. A pivotal
component of our method is a robust online contact alignment
monitoring system that considers tactile error, local surface
curvature, and orientation, facilitating adaptive adjustments
of robot stiffness and force regulation during exploration. We
introduce virtual energy tanks within the control framework
to ensure safety and stability, effectively addressing inherent
safety concerns in visuo-tactile exploration. Evaluation using a
Franka Emika research robot demonstrates the efficacy of VA-
UFIC in exploring unknown 3D curvatures while adhering to
arbitrarily defined force-motion policies. Our evaluation encom-
passes various metrics, including contact alignment monitoring
accuracy, real-time feedback latency, computational efficiency,
and control performance. These metrics provide comprehensive
insights into the effectiveness and practicality of VA-UFIC in
real-world manufacturing scenarios. By seamlessly integrating
vision and tactile sensing, VA-UFIC offers a promising av-
enue for intuitive exploration of complex environments, with
potential applications spanning manufacturing, inspection, and
beyond.

I. INTRODUCTION

Robotic systems have become indispensable in industrial
operations, excelling in tasks demanding repetitive speed and
precision. However, challenges persist when these systems
confront tasks requiring nuanced force and compliance con-
trol, such as polishing car doors or carving metal. Despite
advancements in torque-controlled tactile robots, their de-
ployment for tactile and flexible interaction remains limited
due to the expertise required in control implementation [1].

To enhance the deployment of tactile robots, the devel-
opment of straightforward and intuitive robot skill program-
ming methods is essential to alleviate the need for intricate
tailoring and adjustment of software programs according
to the task specifications of each application. In traditional
factory settings, industry experts experienced in standard
automation processes program the machines, such as CNC
machines,1 to perform required motion or force to deliver
high-quality operations [2]. However, although robotics has
made vast progress in force-motion interaction, including
impedance, force, and unified controls [3]–[5], in flexible
manufacturing where frequent reconfiguration is common,
it remains difficult to efficiently program the robots while
adhering to desired forces and motions derived from task and

We gratefully acknowledge the funding by the European Union’s Horizon
2020 research and innovation program as part of the project ReconCycle
under grant no. 871352, the Bavarian State Ministry for Economic Affairs,
Regional Development and Energy (StMWi) for the Lighthouse Initiative
KI.FABRIK, (Phase 1: Infrastructure and the research and development
program under grant no. DIK0249). The authors are with the Chair of
Robotics and Systems Intelligence, MIRMI - Munich Institute of Robotics
and Machine Intelligence, Technical University of Munich, Germany.
kuebra.karacan@tum.de

1Using CNC milling as an example, a standardized calculation process
generates the tool path based on surface geometry, material feed rate, and
cutting speed.
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Fig. 1: Visuo-Tactile Exploration of Unknown Rigid 3D Cur-
vatures by vision-augmented unified force-impedance control
(VA-UFIC) for a chosen tactile skill. Visuo-tactile exploration is
the next step to achieving a force-motion planning framework that
outputs an object-centric force-motion profile for an arbitrary tactile
skill policy. The explored environment is fed back to the library to
further plan the force-motion policy.

process requirements. Moreover, deploying robots in highly
variable environments, such as small batch-size production,
requires fine-tuning robot controllers to adapt to changing
environmental features and constraints [6]–[8].

To achieve more natural and intuitive robot programming
to broaden robot deployment in manufacturing, it is desirable
to autonomously explore environmental features for a given
arbitrary force-motion policy and use the explored envi-
ronment information to plan the object-centric force-motion
policy, as shown in Fig. 1. Methods such as the operational
space framework, constrained-based task specifications, and
object-centric representations constitute significant steps to-
wards a user-friendly programming paradigm [9]–[12]. How-
ever, directly producing or planning the object-centric force-
motion policy for a non-control expert, given an arbitrary
force-motion policy, requires autonomous investigation of
the environmental constraints experienced by the tools, such
as surface curvatures or normal, during task execution.
This approach would allow non-experts to use controllers,
leveraging environment exploration and analysis of current
surface constraints.

Integrating visual and tactile sensors for contact align-
ment monitoring, like an intelligent end-effector, offers a
promising solution to enhance robots’ environmental aware-
ness, particularly in exploring unknown surface constraints
such as curvatures. While visual perception enables robots
to perceive environmental details without touching, tactile
sensors provide unique insights into force and moments
not discernible through vision alone [13], [14]. However,
challenges arise when irregularities occur outside the cam-
era’s field of view, i.e., the camera’s view is blocked in the
contact point or when tactile sensors fail to sense forces and
moments due to the point contact or even loss of contact, as
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presented in Fig. 2. In other words, different contact shapes
dictate the sensing modality for perceiving environmental
features. Thus, unifying visual and tactile sensors to monitor
the contact alignment between the tool and surface presents
a more comprehensive solution involving various contact
shapes in real-world applications. Approaches in robotics that
synergize visual perception and tactile sensing vary, focusing
on enhancing grasp stability, evaluating object shapes, or
executing manipulation tasks based on predefined structures
such as manipulation graphs or computer-aided design mod-
els [15]–[19]. Despite advancements in visuo-tactile capa-
bilities, using those methods in environment exploration is
mainly limited in 2D for specific contact shapes, persisting
in a gap between current robotic capabilities and real-world
application demands [20]–[22].

This paper aims to bridge the disparity between the
existing abilities of robots and the requirements posed by
real-world scenarios, proposing a novel approach towards
developing simple yet effective and intuitive robotic skill
programming that does not necessitate specialized control ex-
pertise for application: visuo-tactile exploration of unknown
rigid 3D curvatures through vision-augmented unified force-
impedance control (VA-UFIC). By seamlessly integrating
tactile and vision data to span various contact shapes between
the tool and the environment, we develop a robust online
contact alignment monitoring system, considering factors,
e.g., tactile error, local surface curvature, and surface orienta-
tion. This information is seamlessly integrated into a vision-
augmented unified force-impedance control framework, en-
abling the adjustment of robot stiffness and force regulation
while exploring unknown rigid 3D curvatures. Visuo-tactile
exploration is the next step to completing a force-motion
planning framework that outputs an object-centric force-
motion profile for an arbitrary tactile skill policy.

The contributions of this work include:
I The introduction of online contact alignment monitoring

to include various contact shapes between the tool and
the environment: combining tactile error, the contact
surface’s local curvature, and surface orientation derived
from tactile and vision data.

II Visuo-tactile exploration of unknown rigid 3D curva-
tures: integration of contact alignment monitoring into
vision-augmented unified force-impedance control to
adapt the robot’s stiffness and regulate the force profile.

III Implementing virtual energy tanks to ensure system
passivity and stability.

IV Evaluation of the proposed method’s performance re-
garding contact alignment monitoring accuracy, real-
time feedback latency, computational efficiency, and
control performance using a Franka Emika research
robot wiping challenging curvatures.

The remainder of the paper is organized as follows. Sec-
tion II delineates the problem under consideration. Section III
presents the methodology, including visuo-tactile exploration
of unknown rigid 3D curvatures through contact align-
ment monitoring using tactile data and vision. Additionally,
it covers the passivity-based stability analysis for vision-
augmented unified force-impedance control and the imple-
mentation of virtual energy tanks for stabilizing the system
with variable stiffness and force regulation. The experimental
protocol and corresponding results are detailed in Sections IV
and V, respectively. Finally, Section VI provides the paper’s
conclusion.

II. PROBLEM STATEMENT

Robotic manipulation presents many challenges, particu-
larly in adapting predefined contact-rich skills to diverse con-
texts, as encountered in real-world operations. For instance,
polishing strategies designed for flat surfaces may experience
difficulties when applied to curved surfaces, where main-
taining perpendicular alignment of the manipulation tool is

Sensing

Contact 

,

,

, ,

Fig. 2: Environmental feature sensing modality dictated by the
contact shapes. Point contact or no contact/loss of contact: The
surface curvature l and normal vector n can be sensed only by a
camera due to lack of force and moments. Concave surface or flat
contact with small surface irregularities: The tactile sensor is more
effective, where it can sense l and n through contact forces and
moments. Conversely, such obstacles are hard to capture by visual
sensing, either for lying outside of the sensing area or being too
small. Flat contact with convex curvature: Vision or tactile sensor
can sense l and n equally efficiently.

imperative for uniform pressure distribution and consistent
cleaning or polishing without causing damage.

Furthermore, the choice of sensing modality for perceiving
environmental features depends heavily on the contact shape
encountered during manipulation tasks. While cameras excel
in discerning surface curvature and normal vectors for pointy
tools or even no contact, tactile sensors prove more effective
for contact shapes such as concave surfaces or small objects,
where they can sense curvature and surface normal through
contact forces and moments [23]. Thus, contact alignment
monitoring should involve unifying vision and tactile data
to span the possible contact scenarios. Additionally, reliance
on prior environmental knowledge can lead to unstable robot
control and unsafe behaviors in dynamic settings, where
sudden deviations from expected contact alignment may
result in unintended movements, posing safety risks and
potentially damaging equipment or surroundings.

To address these challenges, visuo-tactile exploration of
unknown rigid 3D curvatures by VA-UFIC is a promising
solution. By detecting deviations in contact alignment and
adjusting the end-effector’s configuration, robots can main-
tain desired contacts and identify surface curvatures. Ensur-
ing system stability is crucial to mitigate safety concerns and
maintain consistent performance.

The main assumptions made throughout this study can be
listed as:

I Highly irregular curvatures are excluded from the study
scope due to potential challenges for both sensors to
accurately measure surface properties.

II The minimum distance of the depth camera is not
violated due to an abrupt change of surface geometry.

III The camera is positioned to observe the current region
of interest without predicting future curvatures.

III. METHODOLOGY

The methodology begins with designing and implementing
unified force-impedance control, a well-established technique
governing the robot’s response to external forces while
ensuring high compliance. This control framework integrates
motion and force profiles to facilitate precise environmen-
tal interaction. Next, we explore the integration of tactile
and vision inputs for contact alignment monitoring. This
involves developing algorithms to interpret tactile data and
vision cues to comprehensively understand the environment’s
geometry, e.g., curvatures. Using this sensory information
as a foundation, we propose a visuo-tactile exploration of
unknown rigid 3D curvatures by vision-augmented unified
force-impedance control (VA-UFIC). This framework allows
the robot to dynamically adjust its posture and modify
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stiffness, motion, and force policies to effectively respond
to local faults during interactions with challenging surfaces.
A thorough passivity-based stability analysis is conducted to
ensure stability, identifying potential instabilities arising from
variations in stiffness and force regulations. Additionally,
we integrate virtual energy tanks into the control system
to provide stability guarantees, particularly in the face of
dynamic changes. By implementing the visuo-tactile explo-
ration framework, we aim to develop simple yet effective
and intuitive robotic skill definitions that do not necessitate
specialized control expertise for application.

A. Control Design
For an n-DOF robot manipulator under unified force-

impedance control during contact with gravity compensation,
the Lagrangian dynamics is

M(q)q̈ +C(q, q̇)q̇ + g(q) = τc + τext , (1)
τc = τi + τf + τg , (2)

where τext ∈ Rn represents the external torque exerted
on the robot, while M(q) ∈ Rn×n denotes the robot
mass matrix, C(q, q̇)q̇ ∈ Rn signifies the Coriolis and
centrifugal vector, and g ∈ Rn stands for the gravity vector
in joint space. Additionally, τc ∈ Rn represents the control
torque applied by the robot, which encompasses the torque
command for controlling motion and force explicitly and
separately, with τg ∈ Rn representing gravity compensation.
Moreover, τi and τf ∈ Rn denote torques individually
introduced by impedance and force control, respectively.
Subsequently, we develop a control algorithm for the input
torque τc to execute the desired tactile manipulation skill.
This proposed control law for adaptive tactile skills ex-
tends from unified force-impedance control [5], [24]. Unified
force-impedance control governs the robot’s response to
external forces, ensuring compliance while following motion
and force profiles separately and explicitly. Starting with the
robot’s dynamics equation in Cartesian space

MCẍ+CCẋ+ gC = fc + fext , (3)

where

MC = J#TMJ# , (4)
CC = J#TCJ# , (5)
gC = J#Tg . (6)

The external wrench to the base frame is denoted as fext ∈
R6. The robot mass matrix is represented as MC(q), where
q is the joint configuration. The Coriolis and centrifugal
effects are captured by CC(q, q̇) ∈ R6×6, and gC de-
notes the gravity vector in Cartesian space. Additionally,
fc represents the wrench applied by the robot, which is
related to the joint control torque τc ∈ Rn through the
relationship τc = JT(q)fc, where J ∈ R6×n is the
robot Jacobian matrix, and J# is the pseudo-inverse of the
Jacobian. Compliance control, a subset of impedance control,
omits inertia shaping and consequently excludes feedback of
external forces. The compliance behavior is characterized
by a time-varying stiffness matrix KC(t) ∈ R6×6 and
damping behavior determined by a positive definite matrix
DC ∈ R6×6. Moreover, x ∈ R6 denotes the current pose
of the end-effector in the base frame, and the pose error
is denoted by x̃. A conventional compliance controller for
motion tracking can be formulated as

x̃ = x− xd , (7)
fi = −KC(t)x̃−DCẋ , (8)
τi = JTfi . (9)

The force control is established to maintain the target
contact force in the task space f ee

d ∈ R6, exerted by the
robot concerning the external force f ee

ext ∈ R6, as follows:

τf = J(q)Tff , (10)

ff =

[
[R0

ee]3×3 03×3

03×3 [R0
ee]3×3

]
(f ee

d +Kp f̃ ee
ext+

Ki

∫ t

0

f̃ ee
ext dσ) , (11)

f̃ ee
ext = f ee

ext − f ee
d , (12)

In this context, ff ∈ R6 represents a feed-forward and
feedback force controller in the base frame, which has been
rotated by R0

ee. The proportional-integral (PI) controller
gains are defined by the diagonal matrices Kp and Ki ∈
R6×6. The resultant control torque without the gravity com-
pensation for unified force-impedance control τ ∈ Rn is

τ = τf + τi . (13)

Next, we introduce contact alignment monitoring based on
visual and tactile data to explore unknown rigid 3D curva-
tures for an arbitrary force-motion policy in the end-effector
frame. This rich sensory information is augmented to unified
force-impedance control so that the control parameters, such
as stiffness and contact force shaping function, are decided.
Thus, the robot can maintain contact with the current surface
geometry and orientation.

B. Visuo-Tactile Exploration of Unknown Rigid 3D Cur-
vatures by VA-UFIC

To guarantee a successful execution of the desired skill
and to understand the environment comprehensively, we
monitor the contact alignment that utilizes tactile and visual
perception. Based on this rich sensory information, we enable
the robot to adjust posture, stiffness, motion, and force policy
for local fault recovery during interactions with challenging
surfaces at the low-level control.

The visual perception algorithm operates through two
concurrent threads: (i) data collection and pre-processing
and (ii) surface normal estimation. Initially, depth images
are transformed into point clouds for use within the Point
Cloud Library [25]. RGB and depth images are acquired
from the video stream, precisely aligned, and converted into
a 3D point cloud. Subsequently, a surface normal estimation
method is applied based on the acquired point cloud data to
predict contact surface orientation. Inspired by Westfechtel et
al. [26], the region growing method clusters the surface nor-
mals within similar orientations to segment the point clouds.
Principal Component Analysis (PCA) is then employed on
the clustered segments to determine their orientation.

The eigenvectors of the covariance matrix Σ3×3 =
[e1; e2;n

c
s ], representing the PCA output, characterize a

segment’s primary directions. Here, nc
s ∈ R3×3 denotes the

surface normal of the segment in the camera frame, which
represents the direction of a surface segment, while e1 and e2
represent the long and short edges, respectively. Furthermore,
the local curvature ls of the working surface can be computed
using Equation (16), where λi , i = 1, 2, 3 are the eigenvalues
of the covariance matrix Σ obtained through PCA. Detected
surface normal nc

s and local curvature ls are illustrated in
Fig. 3.

n = [0 0 1]T , (14)
θ = |cos−1(ncT

s n)| , (15)

ls =

∣∣∣∣
λ3

tr(Σ)

∣∣∣∣ . (16)

The end-effector orientation error θ, representing the devi-
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Fig. 3: Contact Alignment. Creating the desired end-effector
orientation matrix R0

ee,d based on the detected surface normal nc
s

involves the following steps: Firstly, transfer the detected surface
normal nc

s from camera frame into robot base frame to get n0
s .

Next, apply detection n0
s as new reference z-axis r′z and project

the current end-effector x-axis rx onto the orthogonal surface of
the estimated z-axis r′z to get r′x. Lastly, generate the adapted y-
axis r′y through the cross-product of r′x and assemble the desired
end-effector rotation matrix R0

ee,d as in (27).

ation in surface normal between nc
s captured by the camera

and the z-axis of the camera (aligned with z-axis of the end-
effector), can be determined using the acos function in (15).
Undesired contacts lead to deviations from the desired pose,
manifesting as either a pose error x̃ee ∈ R6 or external
forces f ee

ext ∈ R6 at the end-effector. In real-time, contact
alignment monitoring accumulates all the error terms and
their corresponding signal strengths as presented in (17).
Simultaneously, the signal strengths for the tactile error,
surface normal deviation, and local curvature term, denoted
as α, ξ, and γ respectively, contribute to the adaptive process
and decide how agile the robot reacts to them. In (18), the
contact alignment monitoring C is employed to calculate a
normalized coefficient h.

C = |α|f eeT
ext x̃

ee|+ ξθ + γls| , (17)

h = 1− C

Cm
. (18)

The contact alignment margin Cm is crucial for compen-
sating for minor environmental effects, such as surface fric-
tion and measurement inaccuracy, and, notably, employing
position rather than velocity or acceleration results in a less
noisy signal. The normalized metric h is subsequently linked
to the maximum stiffness level at the end-effector frame
Kee

max,t through ρalign and it is rotated back to the base
frame by the rotation matrix R0

ee. This inherent behavior
is leveraged to robustly respond to undesired contacts and
reconfigure the end-effector through adaptive adjustments to
the stiffness matrix in the translational directions KC,t.

KC,t = ρalignR
0
eeK

ee
max,t . (19)

The alignment parameter ρalign is extended based on stud-
ies [5], [23], as outlined in (20).

ρ̇align =





min{ρ, 0} , ρalign = 1

ρ , 0 < ρalign < 1, ρalign(0) = 0,

max{ρ, 0} , ρalign = 0
(20)

and ρ is given by

ρ = hρalign + ρmin . (21)

It’s important to note that, to ensure an initial increment when
ρalign = 0, a small positive constant ρmin is introduced into
the dynamics of the shaping function. When the robot is
entirely compliant, meaning ρalign equals zero, it becomes

capable of adapting to the environment. This implies that
the translational component of the actual end-effector pose
xee,t ∈ R3 is fed back to the controller as the desired trans-
lational pose xd,t. Subsequently, we calculate the rotation of
the end-effector R0

ee,d ∈ R3×3 to adapt to the environment.
Upon detecting a significant deviation from the intended

contact alignment between the robotic tool and the surface,
often resulting from abrupt changes in the contact, the robot
becomes compliant in translational directions. Afterward, it
realigns itself with the detected surface normal in the camera
frame, denoted as nc

s , and regenerates the motion and force
policy. This process necessitates the knowledge of the desired
end-effector orientation R0

ee,d, which can be computed from
the detected surface normal nc

s , as shown in Fig. 3. The
contact surface normal is initially transformed from the
camera frame to the end-effector frame, then to the robot
base frame using (22). Ree

c represents the rotation matrix that
transfers from the camera frame to the end-effector frame.
Similarly, R0

c denotes the rotation matrix that transfers from
the camera frame to the robot base frame. Subsequently,
the surface normal n0

s in the base frame contributes to the
construction of the desired orientation matrix R0

ee,d through
the following steps: i.) read the current orientation of the end-
effector and extract the first column rx; ii.) project rx onto
the orthogonal plane of the surface normal, as per (25); iii.)
calculate the second column ry through the cross product of
the projected r

′
x and surface normal n0

s ; iv.) assemble these
three distinct components into the desired rotational matrix
R0

ee,d.

R0
c = R0

eeR
ee
c ,n0

s = R0
cn

c
s , (22)

R0
ee = [[rx]3×1 [ry]3×1 [rz]3×1] , (23)
r′z = n0

s , (24)

r
′
x = rx − (rTx n

0
s )n

0
s , (25)

r
′
y = r

′
z × r

′
x , (26)

R0
ee,d =

[
[r

′
x]3×1 [r

′
y]3×1 [r

′
z]3×1

]
. (27)

To ensure that the input signal provided to the robot is
smooth and continuous, a low-pass filter is implemented,
facilitating the gradual transition of the signal R0

input from
the initial rotation R0

init to the desired rotation R0
ee,d. The

scaling coefficient ζ falls within the range of 0 to 1, and T
represents the time interval governing the convergence of the
low-pass filter. Specifically, at t = 0, signifying the initiation
of contact alignment, the output is the original rotation
R0

init. Conversely, when t = T , indicating the completion of
convergence, the input rotation to the robot becomes R0

ee,d.

ζ =
t

T
, 0 ≤ t ≤ T , (28)

R0
input = (R0

ee,dR
0T
init)

ζR0
init . (29)

Furthermore, we formulate the force shaping function ρfrc.
This function facilitates the alignment of the commanded
force to compensate for tool alignment errors and mitigate
the undesired loss of contacts. The robot accommodates the
tool alignment error f eeT

d x̃ee during contact loss within the
error margin δc > 0. Additionally, in cases where the robot
loses surface contact due to a substantial tool alignment error,
it transitions to impedance control, adhering solely to the
desired motion.

ρfrc=





1 , f eeT
d x̃ee ≤ 0

0.5(1 + cos((π
x̃ee
z

δc
))) , 0 < f eeT

d x̃ee∧
0 < x̃ee

z ≤ δc

0 , otherwise.

(30)
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τf = ρfrcJ
Tff . (31)

Finally, after calculating the orientation matrix, the desired
trajectory and force policy can be adapted accordingly in
the base frame, as shown in Alg. 1. However, stiffness
variation in the impedance controller and, in case of loss of
contact, the force controller may jeopardize the controller’s
stability, resulting in unsafe behaviour [27]. Next, passivity-
based stability analysis for vision-augmented unified force-
impedance control is implemented with virtual energy tanks
for variable stiffness and force regulation to ensure the
system’s passivity and stability.

Algorithm 1: Visuo-Tactile Exploration by VA-UFIC
Input : xee

d , f ee
d , fext, x, nc

s , θ, ls
Output: T 0

ee,d, xd, fd

Receive tactile skill from the task state machine;
while not skill finished do

Read robot pose x and external force fext;
Compute robot pose error x̃ee = xee − xee

d ;
Compute end-effector orientation error θ and
local curvature ls by (15) and (16);

Monitor contact alignment C;
ρ̇align = (Cm−C)

Cm
ρalign;

if 0 < ρalign < 1 then
Kee

C,t = ρalignK
ee
max,t;

Alignment begins, read surface normal nc
s ;

Using nc
s , construct R0

ee,d;
T 0
ee,d ← R0

ee,d and xee,t;
Compute the object-centric tactile policy
xd,fd for the explored environment T 0

ee,d ;

C. Passivity-Based Stability Analysis and Installing Vir-
tual Energy Tanks

Virtual energy tanks are integrated to guarantee stability
by identifying potential instabilities arising from stiffness
variations and force regulations to ensure stability even
amidst dynamic changes [28], [29]. To show the passivity,
the storage function Sr for the Cartesian robot dynamics that
represents the kinetic energy of the robot is

Sr =
1

2
ẋTMCẋ , (32)

where the time derivative of the storage function Ṡr is

Ṡr = ẋT (f + fext) or Ṡr = q̇T (τ + τext) , (33)

which we can say that it is passive for the pair (τ +τext, q̇).
Identifying potential instabilities arising from stiffness varia-
tions and force regulations, we split the problem of analyzing
the stability of robot dynamics into two cases: without
contact (Case I) and during contact (Case II).

1) Case I: Stability analysis without any contact: When
there is no contact, the stiffness KC remains constant. Thus,
only the force controller may cause instability. The stability
of the force controller can be assessed using the subsequent
storage function Sf

Sf =
1

2
x̃TKCx̃ , (34)

Ṡf = ẋTKCx̃ , (35)
= ẋT (−f + ff −DCẋ) . (36)

Due to the pair of (ff , ẋ), the force controller should be
modified to guarantee stability by augmenting a virtual
energy tank such that

f = −DCẋ−KCx̃+ λff + ff,var . (37)

To indicate if the force controller ff is passive, λ is used
such that

λ =

{
1, ẋTff < 0 ,

0, else
(38)

Moreover, ff,var is the modification in the controller regu-
lated by the tank. Being the tank’s energy is St,f , we design
its dynamics ẋt,f as

ẋt,f = λβf
ẋTDCẋ− ẋTff

xt,f
+ ut,f , (39)

yt,f = xt,f , (40)

St,f =
1

2
x2
t,f , (41)

where xt,f , ut,f , and yt,f are the tank’s state, input, and
out variable, respectively. The tank is interconnected to the
controllers through the power-preserving Dirac structure

[
ff,var

ut,f

]
=

[
0 ωf

−ωT
f 0

] [
ẋ
yt,f

]
, (42)

ωf =
σ(St,f)(1− λ)ff

yt,f
. (43)

The design parameter ωf is a modulating factor that controls
the power transmission between the tank and the controller
with the valve σ(St,f) is

σ(St,f) =

{
σ(St,f) ∈ (0, 1], St,f > St,f ,

0, else
(44)

The controller can regulate force if the tank is not depleted.
Note that, to avoid singularities, we set a lower limit St,f
for the energy threshold in the tank. Additionally, to ensure
the tank is not overloaded, a specific upper-limit St,f for the
tank is introduced:

βf =

{
κf ∈ [0, 1], St,f < St,f ,

0, else
(45)

where a smooth transition behavior κf is embedded. Using
ff,var = ωfyt,f , the passivity of the subsystem Sc involv-
ing the tank and the controller with the combined storage
function Soverall

Soverall = Sc + Sr , Sc = Sf + St,f , (46)

Ṡoverall = Ṡc + Ṡr , (47)
= −ẋTf + λ(1− βf)ẋ

Tff−
(1− λβf)ẋ

TDCẋ+ ẋT (f + fext) , (48)
= q̇T τext − (1− λβf)q̇

TJTDCẋ+ (49)
λ(1− βf)q̇

T τf . (50)

The modified unified force-impedance control ensures stabil-
ity in case of loss of contact:

f = −DCẋ−KCx̃+ ρfrc(λ+ σ(St,f)(1− λ))ff . (51)

2) Case II: Stability analysis during contact : Contact
means that while the robot can move in k-dimensions, the
motion is constrained in the rest 6−k dimensions. Thus, the
force controller during contact does not jeopardize stability,
as the components of ẋ in the force control direction is zero
ẋTff = 0. However, stiffness variation in the impedance
controller during contact may cause instability. Next, we
present the stability analysis and the virtual energy tank
for the impedance controller. To assess the passivity of
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this controller, we examine the storage function, which is
regarded as the corresponding spring potential Si

Si =
1

2
x̃TKCx̃ , (52)

Ṡi = ẋTKCx̃+
1

2
x̃T K̇Cx̃ , (53)

= −ẋTfi − ẋTDCẋ+
1

2
x̃T K̇Cx̃ . (54)

Passivity with respect to the pair (fi, ẋ) cannot be guaranteed
due to the term of 1

2 x̃
T K̇x̃. Therefore, we modify the

impedance controller fi by adding a control term fi,var
regulated by the energy tank

fi = −Kconstx̃−DCẋ+ fi,var , (55)
KC = Kconst +Kvar(t) , (56)

where the stiffness matrix has constant Kconst, which can
also be zero, and time-varying parts Kvar(t) = ρalignKmax.
Energy tank state xt,i, its dynamics ẋt,i, and the tank energy
St,i are

ẋt,i = βi
ẋTDẋ

xt,i
+ ut,i , (57)

yt,i = xt,i , (58)

St,i =
1

2
x2
t,i , (59)

where ut,i and yt,i are input and output variable, respectively.
To ensure the tank is not overloaded, a specific upper-limit
St,i for the tank is introduced with a smooth transition
behavior κi

βi =

{
κi ∈ [0, 1], St,i < St,i ,

0, else
(60)

The Dirac structure for the ports implies the passivity of the
system:

[
fi,var

ut,i

]
=

[
0 ωi

−ωT
i 0

] [
ẋ
yt,i

]
, (61)

ωi = −
σ(St,i)Kvar(t)x̃

yt,i
. (62)

The design parameter ωi is a modulating factor that controls
the power transmission between the tank and the impedance
controller with the valve σ(St,i)

σ(St,i) =

{
σ(St,i) ∈ (0, 1], St,i > St,i ,

0, else
(63)

This indicates that the controller can adjust stiffness if the
tank has not been depleted. To prevent singularities, we
establish a lower limit, denoted as St,i, for the energy
threshold in the tank. Furthermore, ensuring the passivity of
subsystem Sc, which comprises the tank and the controller, is
achieved by combining the storage function in the following:

Sc =
1

2
x̃TKconstx̃+

1

2
x2
t,i , (64)

Ṡc = ẋKconstx̃+ ẋt,ixt,i . (65)

Using fi,var = ωiyt,i

Ṡc = −ẋTfi − ẋTDCẋ+ ẋTωiyt,i+ (66)
βiẋ

TDCẋ− ωT
i ẋxt,i , (67)

= −q̇T τi − (1− βi)ẋ
TDCẋ . (68)

TABLE I: Parameters used in the experiments.
Parameter Unit Value
Kmax N/m diag[1000,1000,10,200,200,200]

damping coefficient - diag[0.7,0.7,0.7,1,1,1]
Cm - 0.9

α , ξ , γ - 1 , 0.08 , 10
Kp, Ki - 0.6I6×6, 0.3I6×6

δc m 0.04
ρmin - 0.001
xt,i(0) - 7
St,i J 32
St,i J 1

xt,f(0) - 2
St,f J 2
St,f J 1

The total storage function Soverall and its time derivative
Ṡoverall are

Soverall = Sc + Sr , Ṡoverall = Ṡc + Ṡr , (69)
Ṡoverall = −q̇T τ − (1− βi)ẋ

TDCẋ+ q̇T (τ + τext) ,
(70)

= q̇T τext − (1− βi)q̇
TJTDCẋ . (71)

Finally, the modified unified-impedance control ensures sta-
bility during contact and no-contact:

f = −Kconstx̃−DCẋ− σ(St,i)ρalignKmaxx̃+ (72)
ρfrc(λ+ σ(St,f)(1− λ))ff . (73)

Next, the validation scenarios and relevant performance met-
rics for the exemplary tactile skill to explore the curvatures
are discussed.

IV. EXPERIMENTAL VALIDATION

To assess our framework’s visuo-tactile exploration and
control performance for exploring an unknown rigid curva-
ture, we conduct experiments using a Franka Emika robot
to perform a wiping policy. We employ an Intel RealSense
D435i camera (Intel Corp., USA) to capture environmental
information. The camera is positioned at the robot’s flange to
minimize body occlusion, and its axis aligns with the z-axis
of the end-effector frame during execution. This alignment
simplifies the transformation from the task frame to the base
frame, enhancing the accuracy of surface normal estimation.
The visual pipeline and the robot’s master controller run on
a mini-ITX PC (HP Z2 Mini G5 Workstation with Intel i7-
10700t). The contact surface is 3D-printed with dimensions
of 0.26× 0.51×h, where h = 0.02 sin( π

0.19y+0.44)+0.02
m.

The experimental procedure evaluates the accuracy of
contact alignment monitoring, real-time feedback latency,
computational efficiency, and control performance while
exploring the unknown 3D rigid curvature for an arbitrarily
given wiping policy.

A. Experimental Procedure
During wiping, we conduct experiments for visuo-tactile

exploration of the unknown, challenging curved surface. The
arbitrary wiping tactile policy used during the exploration is

f ee
d = [0, 0, 15, 0, 0, 0] ,

xee
d = [0.04 sin(2t), 0.04(cos(2t)− 1)− 0.005t, 0, 0, 0, 0] ,

where t is the time parameter. Moreover, Table I shows other
parameters designed for the experiments.

First, the robot starts without contacting and aligning to
the surface. The expected behavior is that the robot aligns
itself, establishes contact, and explores the curvatures while
presenting passive and accurate force-motion tracking.
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Fig. 4: Visuo-Tactile Exploration of an Unknown Rigid 3D
Curvature. The robot’s actual trajectory along the y- and z-
direction in the base frame is compared to the model of the contact
surface.

B. Performance Metrics
Performance metrics employed for validation include i.)

contact alignment monitoring accuracy, ii.) real-time feed-
back latency, iii.) computational efficiency, and iv.) control
performance. Contact alignment monitoring accuracy mea-
sures the precision of exploring the surface being wiped.
Real-time feedback latency quantifies the time delay between
sensing contact with the surface and adjusting the robot’s
motion or force. Computational efficiency measures the
processing rate achieved by the visual pipeline, considering
factors such as frame rate and latency. Control performance
encompasses quantifying the accuracy and precision of the
robot’s movements during the wiping task, measuring devi-
ations from the desired wiping trajectory or force profile to
assess control robustness, and evaluating control performance
metrics such as root mean square and absolute mean error in
tracking. Force control precision considers the uniformity of
pressure applied during wiping, ensuring consistent cleaning
or polishing without damaging delicate surfaces. It entails
measuring the deviation between the desired and actual
force exerted on the surface and assessing force control
performance using root mean square error and absolute mean
error.

V. RESULTS AND DISCUSSION

Our experimental results offer quantitative assessments
across multiple performance metrics, confirming the effec-
tiveness of our framework in exploring a surface commanded
by an arbitrary tactile skill despite unknown physical con-
straints. We achieve a high accuracy rate in detecting the
contact alignment between the robot end-effector and the
surface during the exploration using the wiping task. This
precision ensures reliable interaction and practical surface
exploration, as depicted in Fig. 4 and Fig. 5.

Minimal latency ensures swift and adaptive behavior dur-
ing the wiping task, enhancing overall efficiency. The vision
pipeline, including pre-processing and feature extraction,
achieves an average frame rate of 3 frames per second (FPS)
with a loop cycle of 300ms. Even though 300ms might
be considered high performance for vision processed by
a standard computer, these values could be improved for
better real-time perception and decision-making capabilities,
essential for dynamic interaction with the environment. Ad-
ditionally, the tactile perception runs at 1000Hz, provided
by the robot’s internal proprioceptive measurement. Briefly,
due to the difference between the loop cycles of the two
modalities, vision can be considered a spatial component
in the contact monitor alignment. In contrast, the tactile

a)

c)

d)

b)
b)

Fig. 5: Performance Metrics Results for Visuo-Tactile Explo-
ration during Wiping. a) Controller shaping functions, b) Desired
vs. actual motion in the base frame, c) Desired force of 15N shaped
by the function ρfrc vs. measured force in the end effector frame,
d) Tank energies.

sensor acts as a temporal modality. Overall, the robot finishes
exploring the curvature in 20 s.

Accuracy in monitoring the contact alignment and explo-
ration performance is assessed by comparing the robot’s ac-
tual trajectory to the model of the contact surface, as depicted
in Fig. 4. The robot is commanded only with an arbitrary
force-motion policy without modeling the environment. The
robot effectively explores the surface while maintaining the
desired contact force.

The robot starts without alignment or contact, as illus-
trated in Fig. 5.a, where ρalign initially decreases and then
progressively increases over 0-5 s. Subsequently, it fluctuates
between 0 - 1 whenever the contact alignment changes.
ρfrc decreases, particularly when the robot moves down the
surface due to the margin δc. However, the robot adjusts
its posture to align with the contact when ρalign is zero.
Consequently, the force controller is reactivated with the
updated end-effector pose, increasing ρfrc to one such as at
approximately around 7 s.

Quantitative analysis of control performance metrics re-
veals the absolute mean error of 9mm, 8mm, and 4mm
in the desired wiping trajectory along the x-, y-, and z-
axes, respectively (see Fig. 5.b). The corresponding root
mean square errors are approximately 10mm, 10mm, and
6mm. Further quantitative evaluation of the uniformity of
pressure applied during visuo-tactile exploration is depicted
in Fig. 5.c, illustrating a mean absolute deviation of app.
2N between the desired force of 15N shaped by ρfrc
and the actual force exerted on the surface about the z-
direction in the end-effector frame. Furthermore, the root
mean square error in force control performance is app. 3N.
Additionally, the contact surface has high friction, as seen
from the forces about the other directions, which fluctuates
up to the magnitude of 10N. Furthermore, Fig. 5.d illustrates
that the energy tanks remain within their designated limits.
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Specifically, St,i remains below 32 J and decreases due to
large movements on a surface with friction. Additionally,
St,f remains constant at 2 J without overloading the tank.
This indicates the robot’s and its surroundings’ safety during
contact alignment and visuo-tactile exploration.

The authors would like to mention that further study
should focus on deciding Cm instead of fine-tuning the cur-
rent surface material properties, such as friction and rigidity.
Overall, the quantitative evaluations confirm the effectiveness
and practicality of our framework for automated visuo-
tactile exploration of unknown rigid 3D curvatures handled
at the robot’s low-level control. The accuracy, precision,
latency, and computational efficiency presented demonstrate
our method’s potential for increasing robotic deployment
in manufacturing automation and other industries requiring
intricate robotic interaction processes.

VI. CONCLUSION

In conclusion, this paper aims to bridge the gap between
current robotic capabilities and the demands of real-world
applications by simple yet effective and intuitive robotic
skill programming for arbitrarily given tactile policy without
requiring specialized expertise that integrates visuo-tactile
exploration of unknown rigid 3D curvatures by vision-
augmented unified force-impedance control. Combining tac-
tile and vision data, we formulate a robust online contact
alignment monitoring system that considers tactile error,
local surface curvature, and surface orientation. This in-
formation is seamlessly integrated into a vision-augmented
unified force-impedance control framework, allowing for ad-
justing robot stiffness and regulation of force while exploring
the curvatures. Virtual energy tanks ensure system passivity
and stability throughout the visuo-tactile exploration of the
unknown rigid 3D curvatures. Experimental validation with
a Franka Emika research robot executing wiping tasks on
challenging surfaces confirms the efficacy of our approach
in achieving precise and passive visuo-tactile exploration.
Comprehensive performance metrics are used for validation,
including contact alignment monitoring accuracy, real-time
feedback latency, computational efficiency, and control per-
formance. These metrics provide quantitative insights into
our proposed method’s precision, uniformity, speed, and
effectiveness, ensuring its practical applicability in real-world
manufacturing scenarios. As a limitation, highly irregular
curvatures are excluded from the study scope due to potential
challenges for both sensors in accurately measuring surface
properties. Additionally, in the current implementation, the
camera can observe only the current region of interest with-
out predicting forthcoming curvatures, a research opportunity
to address in the future. Future work will investigate planning
the force-motion policy for the explored curvatures toward
a complete solution for generating the object-centric tactile
policy for arbitrarily given policies, helping increase the
robot deployment in real-world manufacturing tasks.
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“Combined visual and touch-based sensing for the autonomous reg-
istration of objects with circular features,” in 2019 19th International
Conference on Advanced Robotics (ICAR), 2019, pp. 426–433.

[17] N. Fazeli, M. Oller, J. Wu, Z. Wu, J. B. Tenenbaum, and A. Rodriguez,
“See, feel, act: Hierarchical learning for complex manipulation skills
with multisensory fusion,” Science Robotics, vol. 4, no. 26, p.
eaav3123, 2019.

[18] K. Nottensteiner, A. Sachtler, and A. Albu-Schäffer, “Towards Au-
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Tactile Robot Programming: Transferring Task Constraints into
Constraint-Based Unified Force-Impedance Control

Kübra Karacan, Robin Jeanne Kirschner, Hamid Sadeghian, Fan Wu, and Sami Haddadin

Abstract— Flexible manufacturing lines are required to meet
the demand for customized and small batch-size products. Even
though state-of-the-art tactile robots may provide the versatility
for increased adaptability and flexibility, their potential is
yet to be fully exploited. To support robotics deployment in
manufacturing, we propose a task-based tactile robot pro-
gramming paradigm that uses an object-centric tactile skill
definition that directly links identified object constraints of
the task to the definition of constraint-based unified force-
impedance control. In this study, we first explain the basic
concept of abstracting the task constraints experienced by the
object and transferring them to the robot’s operational space
frame. Second, using the object-centric tactile skill definition,
we synthesize unified force-impedance control and formalized
holonomic constraints to enable flexible task execution. Later,
we propose the quantified analysis metrics for the process by
analyzing them as a typical example of flexible manipulation
disassembly skills, e.g., levering and unscrew-driving regarding
their object requirements. Supported by realistic experimental
evaluation using a Franka Emika robot, our tactile robot
programming approach for the direct translation between task-
level constraints and robot control parameter design is shown to
be a viable solution for increased robotic deployment in flexible
manufacturing lines.

I. INTRODUCTION

Today’s primary demand for flexible manufacturing lines
is customization and, thus, small batch-size production [1].
This necessitates robots that are adaptable to changing task
constraints. State-of-the-art tactile robots provide the versatil-
ity for increased adaptability and flexibility [2]. Nevertheless,
their deployment for tactile and flexible interaction requires
control experts. Consequently, their potentials are yet to be
fully exploited [3].

One solution for increased robot deployment is to enable
simple yet effective and intuitive robotic skill definitions that
do not require control expertise for application. To elaborate,
human experts in manufacturing sectors have comprehensive
knowledge about the desired task and its requirements [4].
For instance, the task constraints, such as force and motion
expected to be experienced by objects during manipulation,
are well-defined. Take, for example, processing applications
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Fig. 1: Direct transfer of task information and constraints into
tactile robot control for increased flexibility. A task-oriented
tactile robot programming framework translates the desired object-
centric force/motion task into the robot domain.

such as milling, where the contact forces and feed speed are
calculated in a standardized manner. Consequently, robots
for flexible production need to be programmed to manipulate
the objects, respecting those well-defined forces and motion.
In the robotics community, numerous strategies for force-
motion interaction have been developed, such as admittance
control [5], impedance control [6], force control [7], and
unified control [8], [9]. Nevertheless, robots operating under
highly varying conditions, such as small batch-size sectors,
lead to changing task constraints, requiring re-configuring
and tuning the robot controllers accordingly.

In order to realize more natural and intuitive robot pro-
gramming, it would be desired to understand the task con-
straints directly and feed these to the controller, see Fig. 1.
Representations, e.g., the operational space framework [10],
constrained-based or object-centric task specifications [11],
[12], are significant steps towards this easier-to-use program-
ming paradigm. However, directly embedding the constraints
an object experiences during task execution for robot control
also requires using the task constraints and directly combin-
ing them with modern controllers for flexible tactile task
execution. As such, controllers can be tuned by non-experts
and learned by demonstration based on analyzing the desired
task constraints.

Numerous studies consider force control as a method
for developing adaptive robotic skills, testing the proposed
controllers with constant force values, thresholds, or con-
straints [13]–[17]. Nonetheless, such strategies struggle with
robustness when faced with environmental uncertainties and
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Fig. 2: Tactile skill definition imposed by the physical task
constraints. The object’s desired state dictates the task phase plot,
whereas the present environment’s circumstances shape it. TF: Task
Frame and RF: Robot Frame.

may fail when perceptual imprecision occurs [18], [19].
Impedance control is an established method for enforc-
ing dynamic behavior to achieve the desired motion while
interacting with the environment [6]. Adaptive tuning of
impedance parameters is advantageous in various applica-
tions [20], [21]. Variable impedance approaches are also used
in shared autonomy applications to coordinate the motions of
humans and robots and to update the predefined skill motion
policy [22]. Although multiple efforts were taken among
the robotic community to realize adaptive manipulation with
perception uncertainties [11], [23]–[28], this is yet to be
solved in principle and has not found its way into the real-
world industry.

This paper proposes a task-oriented tactile robot pro-
gramming paradigm that uses an object-centric tactile skill
definition. This concept links identified object constraints of
the task directly to the definition of constrained-based unified
force-impedance control, enabling the translation between
task-level constraints and robot control parameter design. For
this, we

1. Introduce the basic concept of abstracting the task
constraints experienced by the object and transferring
them to the robot operational space frame,

2. Extend the controller schemes of our previous works
[22], [29] by the formalized holonomic constraints to
enable flexible task execution,

3. Analyze as a challenging, however, representative exam-
ple of flexible manipulation disassembly skills starting
from the respective object requirements,

4. Propose suitable process analysis metrics, and
5. Experimentally validate the approach with a Franka

Emika robot.
The remainder of this paper is structured as follows. First,

Sec. II formulates the processes using their required task
constraints under the tactile skills and introduces the tactile
robot programming method, transferring the task constraints
into the robot control. The validation scenarios, the proposed
task performance metrics, and the corresponding results are
demonstrated and discussed in Sec. III and Sec. IV. Finally,
Sec. V concludes the paper.

II. METHODOLOGY

We refer to interaction skills requiring force and mo-
tion profiles and compliant behavior as tactile manipulation
skills [29]. Successful execution of the tactile skills is a

challenging problem that involves force and form closures
between the robot end-effector and the manipulation object.
Every object in the real world is subject to force and
motion constraints in three translational and three rotational
directions, as depicted in Fig. 2a). This object-centric ab-
straction defines any tactile skill independent of the execution
instance, like the robot. We introduced the phase plot [29]
to represent the force-velocity task constraints for required
skills. This representation now serves as the basis to under-
stand the dynamic between the skill constraints based on the
simple object-centric force-velocity analysis as depicted in
Fig. 2b). Roughly saying, the task phase plot is the recipe
for the task execution by any instance. The great challenge
is formalizing this recipe so that it fits into the robot control
and can handle changes in execution, which we describe in
detail in the following.

A. Tactile Skill Representation
As previously mentioned, any tactile process, such as lev-

ering or unscrew-driving, is defined with specific boundary
conditions in motion and force. Constraints restrict motion
from a purely geometric standpoint, and the reaction force
is zero along the free axis in k-dimension. In other words,
during task execution, ideally, the tool moves along the free
axes at velocity ẋt

k×1, while the contact forces f t
(6−k)×1

occur along the other axes. Selection matrices T6×k and
Y6×(6−k) are comprised of 1 and 0 to decouple the motion
and force sub-spaces [7], [30]. Ideally, the task phase plot
(Fig. 2b) demonstrates the entire power cycle that the object
goes through, in which the force-velocity relation evolves
such that the contact is established smoothly ẋ = 0 with
the surface, at the same time an external force fext > 0 is
exerted to it.

For the exemplary scenario in Fig. 2c) the selection matri-
ces Y and T are deduced from the physical task constraints
and computed as follows. Assuming k = 5, Y = [δi(d)]6×1,
where a Kronecker function δi(d) is defined as

δi(d) =

{
0, if i ̸= d

1, if i = d
(1)

By adding zero columns to Y up to the dimension of six by
six to span matrix Y ′, we get

Y ′ = [δij(d)]6×6, (2)

where

δij(d) =

{
1, if i = j = d

0, else
(3)

Let T ′ = I − Y ′ and discarding the zero columns of T ′

leads to T . In case d = 3 which holds for the examples to
be discussed in Sec. III, we have:

T =




1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




,Y =




0

0

1

0

0

0



. (4)
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Fig. 3: Task-oriented Tactile Robot Programming. The controller
shaping functions ensure that the controller interacts with the
environment robustly and safely.

Rearranging the kinematics equation for the object using
natural (geometric) and artificial constraints in the robot
frame yields:

ẋ6×1 = R0
ee(α)T6×kẋ

t
k×1 , ẋ

t
k×1 = T#R0

ee(α)
TJq̇ , (5)

f6×1 = R0
ee(α)Y6×(6−k)f

t
(6−k)×1 , (6)

Jcon = Y #R0
ee(α)

TJ ,Jfree = T#R0
ee(α)

TJ , (7)

where R0
ee(α) is the rotation matrix of the end-effector, J

is the robot Jacobian matrix. The Moore–Penrose pseudo-
inverse of the matrices Y and T are:

T# = (TTT)−1T , Y # = (Y Y T)−1Y . (8)

Continuity in the force-velocity task phase plot corresponds
to the absence of abrupt power changes during the process,
leading to success in the task. Therefore, we further develop
the unified force-impedance control paradigm to command
the object motion and force imposed by the task constraints.
We also set the control shaping functions to maintain the
continuity in the task phase plot by stiffness variation and
force adaptation, as framed in Fig. 3.

B. Controller Design
The proposed control law for adaptive tactile skills is

synthesized unified force-impedance control [8], [22] and
constrained control [30], [31]. The controller has four main
features:

I) following the desired motion xd with impedance control
II) regulating the model-based contact force λ based on

the desired force fd without having to tune additional
parameters, e.g., PID gains,

III) gravity compensation,
IV) null-space control.
The corresponding control torque τd ∈ Rn is defined as

τd = τimp + τfrc + τg + τnull , (9)

where τimp, τfrc, τg , and τnull ∈ Rn are the input torque
for (i) impedance control; (ii) force control; (iii) gravity
compensation; and (iv) null-space control.

1) Constrained Robot Dynamics: The partially con-
strained robot dynamics can be deduced by an augmented La-
grangian, where the Lagrangian multiplier λ are the general-
ized contact forces when attempting to break the constraints.
Using the Euler-Lagrange equations in the extended space of
generalized coordinates q ∈ Rn, multiplier λ ∈ R(6−k), and
collocated external force along the free directions ffree ∈ Rk

subjected to the holonomic constraints Φ(q) = 0 ∈ R(6−k))

where feasible motions are allowed in k dimensions yields

M(q)q̈ + c(q, q̇) + g(q) = τd + τext , (10)

τext = JT
con(q)λ+ JT

freeffree , (11)

where τext ∈ Rn represents the external torque exerted
on the robot, while M(q) denotes the robot mass matrix,
c(q, q̇) ∈ Rn signifies the Coriolis and centrifugal vector,
and g stands for the gravity vector in joint space. Addi-
tionally, τd ∈ Rn represents the control torque applied by
the robot. Finally, we define the Jacobian of the constraints
Jcon = ∂Φ(q)

∂(q) ∈ R(6−k)×n computed in (7):

Φ̇(q) = 0(6−k)×1 = Jconq̇ . (12)

2) Impedance Control: The desired impedance behavior
along the free axes at the tooltip is

fimp = KC x̃+DC
˙̃x+MC(q)ẍd +CC(q, q̇)ẋd , (13)

τimp = JT
freefimp , (14)

where x ∈ Rk and xd ∈ Rk are the actual pose and the
desired pose along the free axes, respectively, as well as, the
pose error is x̃ = xd−x. Furthermore, KC and DC ∈ Rk×k

are diagonal stiffness and damping matrices, respectively.
MC(q) is the robot mass matrix in task space along the
free axes, CC(q, q̇) ∈ Rk×k is the Coriolis and centrifugal
matrix.

The undesired contacts cause deviations from the desired
pose that create either a pose error x̃ee ∈ R6, or external
forces f ee

ext ∈ R6 at the end-effector. This phenomenon is
exploited to react robustly to the undesired contacts and to
re-configure the end-effector [22] by adapting the stiffness
matrix KC. Having the St threshold is critical for compen-
sating for minor environmental effects such as friction on
the surface and measurement inaccuracies. It is also worth
noting that using position instead of velocity or acceleration
results in a less noisy signal. The normalized metric β is
then coupled to KC via ρimp.

β = 1− ∥f
ee
ext · x̃ee∥
St

, (15)

KC = ρimpKmax , (16)

where the stiffness adaptation parameter ρimp is calculated
by

ρ̇imp =





min{ρr, 0} , ρimp = 1

ρr , 0 < ρimp < 1, ρimp(0) = 0,

max{ρr, 0} , ρimp = 0
(17)

and ρr is

ρr = βρimp + ρmin. (18)
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Fig. 4: Tactile disassembly skill examples. Task constraints T and
Y encode the motion and force sub-spaces and are the same in the
shown cases.

Once the robot’s behavior is compliant ρimp = 0, it reacts
to the environment. Adapted to the current environmental
conditions, the robot recovers its maximum stiffness and
resumes the desired motion from its present configuration.
It should be noted that a slight positive constant ρmin is
included in the shaping function dynamics to provide an
initial increment for the situation ρimp = 0.

3) Force Control: Instead of having to tune gains and
parameters to specific situations, we chose to design the force
controller ffrc to be the difference between the desired fd ∈
R(6−k) and the model-based contact force λ, considering λ
should be equal to fd [30]

ffrc = fd − λ . (19)

To calculate the model-based contact force λ, the kinematics
equation at acceleration level in (20) is sol it.

Φ̈(q) = 0(6−k)×1 = J̇conq̇ + Jconq̈ (20)

After inserting the joint accelerations from (10) and the
input torque (9), rearranging the terms yields

λ = −J#
conJconM

−1(JT
freefimp + τnull)+

J#
conJconM

−1c− J#
conJ̇conq̇+

J#
conJconM

−1(JT
freeffree) . (21)

The inertia-weighted pseudo-inverse of the constraint Jaco-
bian Jcon is J#

con = (JconM
−1JT

con)
−1. Finally, the input

torque to control the desired contact force is

τfrc = ρfrcJ
T
conffrc . (22)

Additionally, we design the force shaping function ρfrc. The
force shaping function combines ρc and ρimp to adapt the
commanded force caused by the tool alignment error and
undesired contacts.

ρfrc = ρimpρc . (23)

The robot tolerates the tool alignment error ∥f ee
d · x̃ee∥

during the contact by the lower limit of Smin within δc > 0.
Moreover, if the robot loses surface contact due to the large
tool alignment error, the robot is only impedance-controlled
and follows the desired motion.

ρc=





1 , ∥f ee
d · x̃ee∥ ≤ Smin

0.5(1 + cos((π
∥fee

d ·x̃ee∥−Smin

δc
))) , Smin < ∥f ee

d · x̃ee∥
≤ Smin + δc

0 , otherwise.
(24)

It is noteworthy to mention that even though the robot
behaves compliantly to the undesired contacts with the help
of the control shaping functions as well as we fully decouple
the motion and force sub-spaces, using T and Y based on
the task constraints, the unification of force and impedance
control, as well as, variable stiffness in the impedance con-
troller may compromise the stability [32]. However, one may
guarantee stability by installing virtual energy tanks [33].

Next, the validation scenarios and relevant evaluation
metrics for the exemplary tactile skills are discussed.

III. VALIDATION SCENARIOS

We focus on the tasks from the disassembly processes as
our representative examples. Levering and unscrew-driving
are two crucial skills widely used in disassembly tasks
involved in electronics waste recycling, a field heavily depen-
dent on manual labor and challenging to automate by using
robots [34].

A. Levering
The levering operation is one of the main steps in the

disassembly pipeline. For instance, when removing the PCB
from a heat-cost-allocator (HCA), levering lets us apply mo-
ments using the levering support at the edge of the HCA, as
shown in Fig. 4. One approach to levering is to use periodic
motions xt

d while maintaining contact f t
d perpendicular to

the tooltip, essentially when the desired force is complicated
to define to lever an object [34]. Levering is likely successful
when the locking mechanism is broken or fully opened,
thereby stuck. In other words, it is difficult to define a goal
for a successful execution.

We design an experimental setup to enable reproducible
comparisons by choosing a car outlet socket as our exem-
plary object and manufacturing an aluminum counterpart to
fix it firmly. The lid of a car socket outlet is levered by using
the peg. The length and diameter of the peg are 20mm and
3mm, respectively. The experiment starts with no contact,
and the algorithm is defined such that the robot should start
with force control to establish contact. The expected behavior
is that if no contact is sensed, the robot should stop force
control and restart when contact is sensed. The motion is
a function of time t, whereas amplitude and frequency are
B = 0.04m and ω = 0.15Hz, respectively.

xt
d = [0 |B sin(2πωt)| 0 0 0]T ,f t

d = [12] , (25)
St = 0.5 , Smin = 0.0001 , δc = 0.7 . (26)

The task constraints T and Y are the same as derived in
(4).

B. Unscrew-driving
Electronic unscrew-driving is possible in two ways:

button-triggered or push-to-start. As button-triggered screw-
driver requires additional setups [35], we analyze the push-
to-start electronic screwdriver-based process. The process
requires the screwdriver to be pushed while the screw moves
in the opposite direction. Push-to-start is generally triggered
by a certain amount of force, as provided in the tool’s
datasheet. The tool should also be perpendicular to the screw
to maintain contact. During our experiments, we use an
M8x25mm screw and drill the thread through an aluminum
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Fig. 5: Task phase plots. Task evolution is presented for Top:
levering and Bottom: unscrew-driving. Continuity in the plots shows
the robustness to varying external forces, thereby, the successful
execution of the process.

counterpart to fix it in our experimental setup. While the
same task constraints T and Y are used, the rest of the
parameters are as follows:

xt
d = [0 0 0 0 0]T ,f t

d = [20] , (27)
St = 3.5 , Smin = 0.0001 , δc = 1.8 . (28)

The translational Kmax,t and rotational Kmax,r

stiffness used in the experiments are 1500N/m and
200Nm/rad, respectively, whereas the damping ratio is
diag[0.7, 0.7, 0.7, 1, 1, 1].

C. Remarks

Based on the levering and unscrew-driving process defini-
tions, for successfully executing the process, the robot should
be i) positioning the tool as accurately as possible at a desired
region of interest, ii) applying a force profile as accurately as
possible, iii) ensuring an accurate motion and process success
even if undesired external forces occur, iv) deviating from a
defined motion profile as little as possible. Thus, our task-
oriented tactile robot programming framework is evaluated
for these four items under the categories of a) position
accuracy, b) displacement tolerance, c) force tolerance, and
d) force and motion error. A Franka Emika robot is used for
the experiments, and the robot’s internal sensing capabilities
are used to measure the position, velocity, and external
force/torque at the end-effector [36].

IV. RESULTS AND DISCUSSION

For the levering scenario, the expected behavior for the
robot is to move to the contact and maintain the contact force
of 12N with the lid in the z-direction while moving along
the x-direction in the end-effector frame. In contrast, the lid
is levered about the y-direction. As the robot is compliant in
the z-direction, it moves with the lid along the z-direction due
to force control while moving along the x-direction due to
impedance control. In this case, the motion in the z-direction
is treated as a tool alignment error and regulated by the force
control shaping function ρc. Thus, the robot can only move
within the threshold δc, meaning that the force is reduced to
zero after a certain distance by ρfrc. During unscrew-driving,
the robot pushes the screw with the force of 20N in the

Fig. 6: Norm of the linear and rotational velocities of the
end effector. Top: Levering and Bottom: unscrew-driving. Constant
orientation due to rotational velocity around zero while moving
means that the robot maintains contact.

z-direction while moving in the opposite direction. As the
screw gets loose during the process, it starts moving in other
directions, altering the external force at the end-effector.
Therefore, the stiffness adaptation ρimp is activated, and due
to this compliant behavior, the robot’s end-effector is pushed
by the external force and reconfigured itself. This process
continues until the screw is fully unscrewed to 25mm.

The task phase plot is developed with the external force
and velocity in the z-direction in the robot’s task space.
The force and velocity evolution also translates to the power
development during the task, as shown in Fig. 5. Therefore,
the continuity in the plot means the task proceeds success-
fully. In particular, the levering process starts with no-contact
0N. The initial back and forth motion around 60mm/s and
−20mm/s with around 15N is the initial contact. After
the initial contact with the lid, the force decreases to 12N
while it moves together with the lid with 40mm/s. Later,
the contact force is maintained around 7N at 0mm/s, where
the lid is fully opened and cannot move anymore. During the
unscrew-driving process, after the initial contact of 30N, the
robot starts unscrew-driving by the force of 20N. As it can
be seen in the plot in Fig. 5, while the robot applies the force
of 20N, it also moves up to the velocity of −50mm/s, as
the screw keeps unscrewed. However, later, the robot stops
moving and applying force. After adapting to the current
configuration, the robot keeps repeating the pattern in the
task phase plot. The continuity in the plot during levering
and unscrew-driving can be interpreted as a successful task.
Additionally, it shows robustness to varying external forces.

The position accuracy of aligning the tool requires con-
stant end-effector orientation during the processes, which is
crucial to establishing and maintaining contact. The norm
of the angular velocity w.r.t the end effector in Fig. 6
is ≈ 0 rad/s both in levering and unscrew-driving, which
shows us the robot maintains the contact robustly during the
process.

Force-motion profile errors can be analyzed in the force
and position plots, as shown in Fig. 7 and Fig. 8. Notably, the
commanded force to the robot is the desired force times ρfrc.
For instance, as shown in Fig. 7, ρfrc decrease to app. 0.6,
such that the commanded force fz reduced from 12N to app.
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Fig. 7: Performance metrics results for levering. Top: desired vs.
measured force in the end effector frame, Middle: desired vs. actual
motion in the base frame, and Bottom: controller shaping functions.

7.2N. While tracking the motion and forces as accurately
as possible is important, for successful execution, levering
and unscrew-driving are the processes that need to tolerate
the force and displacement imperfections due to, e.g., a
loose screw moving in the thread. Here, we can comment
that our tactile robot programming framework allows, yet
limits the force and displacement tolerances by the control
shaping functions such that they regulate the stiffness and
commanded forces for the certain thresholds St, Smin, and
δc that the human experts set beforehand to allow acceptable
deviations while ensuring successful executions.

In general, the focus in tactile skills relies on contact/tool
alignment ρc and compliant behavior ρimp, namely, force
and displacement tolerance, such that after specific tool
alignment error, the robot should stop applying force or if the
impedance shaping is activated due to the motion error and
external forces occurred. Specifically, the levering process is
analyzed and based on the results in Fig. 7, the contact/tool
alignment during sinusoidal motion or force-displacement
tolerance is crucial to achieving a robust levering process
as the lid moves primarily, and the robot should maintain
contact between the tool and the lid during the motion.

In addition, unscrew-driving demands compliant behavior
or displacement tolerance, as can be interpreted from the
results in Fig. 8. It is also predictable as the robot should
allow the screw to move upwards while pushing it to trigger
the screwdriver, and this requires the screwdriver to be per-
pendicular to the screw to maintain contact. The impedance
shaping is activated if the contact is about to be broken,
leading to external force and motion error. Here, the robot
stops force control while compliant due to decreasing ρimp.
The stiffness is fully recovered in the current configuration,
and the robot re-starts applying force after correct tool
alignment. The authors would like to mention that further
study should focus on deciding St, ρmin, and δc instead of
fine-tuning the current surface material properties, such as
friction and rigidity.

Fig. 8: Performance metrics results for unscrew-driving. Top:
desired vs. measured force in the end effector frame, Middle:
desired vs. actual motion in the base frame, and Bottom: controller
shaping functions.

V. CONCLUSION

Cutting-edge tactile robots offer improved adaptability
and flexibility, but still, their programming using force- or
impedance control is relatively static and requires expert
knowledge. Reaching the full potential of flexible manipu-
lation task execution in real-world scenarios requires highly
simplified programming for non-experts. Thus, we propose
a task-oriented tactile robot programming framework to
successfully deploy tactile robotics in manufacturing that
exploits object-centric tactile skill definition.

The core concept consists of a) the basic knowledge of
the forces and motion constraints a real-world object is
subject to; b) using a force-velocity representation called
task phase showing the change of these constraints during
the task; and c) transferring this intuitive representation into
the robot control, without requiring the robot operators expert
knowledge about controller parameterization. We apply this
scheme to establish constraint-based unified force-impedance
control for common manipulation skills, which we validate
in real-life experiments using the tasks of unscrew-driving
and levering with a Franka Emika robot manipulator by
evaluating in terms of the proposed analysis metrics i) posi-
tion accuracy, ii) displacement tolerance, iii) force tolerance,
and iv) force and motion error. Finally, our approach to
simplify tactile robot programming and enable the direct
translation between task-level constraints and robot control
is a potential solution for increased robotic deployment in
flexible manufacturing lines.

Future work will focus on blending the tactile disassembly
skills by extending our task-oriented tactile robot program-
ming approach.
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Abstract: Robot assembly tasks can fail due to unpredictable errors and can only continue with the
manual intervention of a human operator. Recently, we proposed an exception strategy learning
framework based on statistical learning and context determination, which can successfully resolve
such situations. This paper deals with context determination from multimodal data, which is the key
component of our framework. We propose a novel approach to generate unified low-dimensional
context descriptions based on image and force-torque data. For this purpose, we combine a state-of-
the-art neural network model for image segmentation and contact point estimation using force-torque
measurements. An ensemble of decision trees is used to combine features from the two modalities.
To validate the proposed approach, we have collected datasets of deliberately induced insertion
failures both for the classic peg-in-hole insertion task and for an industrially relevant task of car
starter assembly. We demonstrate that the proposed approach generates reliable low-dimensional
descriptors, suitable as queries necessary in statistical learning.

Keywords: sensor fusion; predictive clustering trees; autonomous exception handling; autonomous
assembly; peg-in-hole

1. Introduction

Assembly tasks, such as inserting parts into fixtures, are among the most common
industrial applications [1]. Robot assembly typically requires a good understanding of
the procedure and knowledge about part properties and geometry [2]. Therefore, most of
the deployed robotic systems used today are carefully programmed [3]. As such, they are
limited to performing a specific assembly task in structured environments without external
disturbances. Nevertheless, they can fail due to various errors that cannot be foreseen in
advance. Possible causes include deviations in the geometry of the workpiece, imprecise
grasping, etc. In such cases, it is necessary for the operator to manually eliminate the cause
of the error, reset the system, and restart the task [4]. Current robotic systems do not learn
from such situations. If a similar situation repeats, human intervention is needed again. To
ensure robust execution of robot assembly tasks, it is increasingly important to handle such
exception scenarios autonomously, possibly by incorporating previous experience.

The first step toward building such an autonomous system is to determine the reason
for the failure. For example, a robot may fail to assemble two parts, but it is unclear whether
it has failed because the parts do not match or because of an ineffective manipulation
strategy [5]. Understanding or at least classifying the reason for the failure is, therefore,
crucial for the successful design of a corresponding exception policy.

Recently, we have proposed a framework for the learning of exception strategies [6],
which is based on determining the context of the failure. The extracted context is associated
with different robot policies needed to resolve the cause of the error. In the event of an error,
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the system stops, and the robot switches to gravity compensation mode. Using incremental
kinesthetic guidance [7], the operator performs a sequence of movements to allow the
continuation of regular operation. First, the robot builds a database of corrective actions
and associates them with the detected error contexts. Then, using statistical methods, it
computes an appropriate action by generalizing the corrective actions associated with
different error contexts. In this way, the robot becomes increasingly able to resolve errors
on its own and eventually does not require human intervention to resolve assembly failures
anymore (see Figure 1).

  

Error – process 
stops

Human first resolves the 
situation using 
kinesthetic guiding

Error detection based on 
sensor data & context 
determination

Manual error 
recovery

Human demonstrates an 
exception policy. The policy 
is associated with context 
based on sensor data

Demonstration in 
changed situation

…

Next time when a similar error 
occurs, based on the current 
context, the robot generates a 
suitable policy

Error – automatic 
recovery

resolve relearn

Figure 1. Simplified exception handling workflow [6]. This paper is about context determination,
which is an essential requirement of the workflow.

Modern robotic systems are equipped with a wide variety of sensors that can be
used to detect a possible failure. On the other hand, context determination can be seen
as inferring the circumstances that have resulted in the given outcome. The first step in
the exception strategy learning framework is, therefore, context determination, which can
be seen as inferring a minimal representation of the circumstances that have resulted in
the given outcome. As raw sensor data are usually high-dimensional, they cannot be
directly used with statistical learning methods that allow us to relate the observed state
(context) to the previous states and generate an appropriate robot action to resume regular
operation. Moreover, for reliable context determination, it is often necessary to combine
complementary information from different sensor modalities. This process is known as
data fusion and can lead to improved accuracy of the model compared to a model based on
any of the individual data sources alone [8]. Ensemble learning methods have proven to
be appropriate for addressing multimodal classification and regression problems in many
domains [9].

We propose to train models that generate low-dimensional context descriptions based
on multimodal sensor data from vision systems and force-torque sensors. In this sense,
context determination can be defined as determining of the type of circumstances from
multimodal data. We use an intermediate-fusion approach, where we first extract modality-
specific features, as shown in Figure 2. We rely on a state-of-the-art neural network model
for image segmentation to extract features from images, whereas we use contact point
estimation to extract data from the measured forces and torques. To generate a low-
dimensional context description of the circumstances that resulted in the given outcome
from the extracted features, we use ensembles of predictive clustering trees (PCTs) [10],
which are well suited for handling hierarchical multi-label classification (HMLC) tasks.
With the proposed hierarchical approach, the training of the context estimation model
can be divided into multiple phases, allowing for an incremental approach. The time-
consuming training of the image segmentation model only needs to be performed once,
whereas fast training of the high-level ensemble model can be performed each time a new
class needs to be added.
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Figure 2. Context determination pipeline. Features are processed for each modality separately
(Sections 3.4–3.6) and later merged by using ensembles of predictive clustering trees (Section 3.7).
References: [10–12].

The evaluation of the proposed approach comprised two scenarios. Peg-in-hole as-
sembly is chosen as the first use case because it reflects the typical complexity of industrial
assembly tasks [13]. We show that it is possible to apply the method to other tasks by
performing an evaluation of a car starter assembly task. The approach can also be ap-
plied to further situations. Apart from identifying error classes, the only process-specific
step is selecting the image segments of interest and training the instance segmentation
model accordingly.

The main highlights of our context determination approach are:

• with the use of multimodal data we get an improved predictive performance of ensembles;
• it is easy to add new classes (this is necessary as we discover new failure cases

incrementally as they arise);
• the approach generalizes well to new cases (we can make useful predictions based on

a model trained on a limited amount of data).

The paper is organized into six sections. Section 2 reviews current strategies to handle
exceptions in robot assembly and the usage of tactile and vision sensor data in robotics. The
details of our approach are presented in Section 3. In Section 4, the predictive performances
of different variations of the developed model for context determination are evaluated.
Section 5 discusses the results as well as future plans. We conclude with a brief summary
of the paper in Section 6.

2. Related Work

Fault-tolerant robotic systems that are able to detect and autonomously deal with sys-
tem failures have been the subject of research for many years [14]. While some researchers
are concerned with fault tolerance in medical, space, nuclear, and other hazardous applica-
tions, our research focuses on industrial processes, where we can ensure operator presence,
at least in the learning phase. In such environments, strategies based on various heuristic
movement patterns (random search, spiral search, dithering, vibrating, etc.) are often used
to deal with unexpected situations [15,16].

Laursen et al. [17] proposed a system that can automatically recover from certain types
of errors by performing the task in reverse order until the system returns to a state from
which the execution can resume. Error recovery can also be performed collaboratively so
that the robot recognizes when it is unable to proceed and asks for human intervention to
complete the task [18]. Recently, it was proposed to use ergodic exploration to increase the
insertion task success rate based on information gathered from human demonstrations [19].
Another method exploits variability in human demonstrations to consider task uncertainties
and does not rely on external sensors [2].

On the other hand, another line of research highlights the importance of sensorimotor
interaction for future learning methods in robotics [20]. During the assembly task execution,
monitoring the exerted forces and torques is necessary to prevent damaging the parts or
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robot [6]. These data can be used to avoid large impact forces exploiting compliance
and on-line adaptation [21], to speed up the process in the subsequent repetitions [22], to
determine contact points and learn contact policies [11], and to predict [23] or classify [24]
robot execution failures.

Various previous works have studied the idea to calculate contact points based on
force-torque measurements [11,25–27]. In our previous work [6], we used force-torque
measurements to calculate trajectory refinements that enable successful insertion despite
the grasping error. Force-torque data carry enough information to generate an appropriate
refinement, given that we already know the nature of the problem (orientation vs. position
grasping error). However, in general, sufficient information cannot be obtained from force-
torque data only. For example, the policies for correcting unsuccessful assembly attempts
often depend on which part of the peg is in contact with the environment [28]. Thus
additional sensors are required. Using a force-torque sensor only is also problematic due to
sensor noise. Many applications in process automation, therefore, rely on vision systems to
extract the necessary information. While vision can be quite sensitive to calibration errors
and typically requires a well-designed workcell to ensure optimal lighting conditions and
avoid occlusions, it is fast and can be used for the global detection of multiple features [29].

The advantage of combining visual and contact information has been investigated
in multiple works in robotics over a longer period of time. This research includes dimen-
sion inspection [30], object recognition [31], and localization [29]. In the context of robot
assembly, visual and tactile sensing has been used to continuously track assembly parts
using multimodal fusion based on particle filters [32] and Bayesian state estimation [13].
We share the principal idea of combining data from visual and force-based sensing. We
want to further develop these concepts towards structured representations of the task
context in order to develop an integrated solution for the automatic handling of failures in
assembly processes.

Multimodal fusion combines information from a set of different types of sensors.
Detection and classification problems can be addressed more efficiently by exploiting
complementary information from different sensors [8]. Different methods for data fusion
from multimodal sources exist. Generally, we can distinguish three levels of data fusion:
early fusion, where the raw data are combined ahead of feature extraction and the result
is obtained directly; intermediate fusion, where modality-specific features are extracted
and joined before obtaining the result; and late fusion, where the modality-wise results
are combined [33,34]. It may seem that combining multimodal data at the raw data level
should yield the best results, as there would be no loss of information. However, due to the
unknown inter-dependencies in raw data, fusion at a higher level of abstraction may be a
more helpful approach in practice [35].

Ensemble learning is a general approach in machine learning that seeks better pre-
dictive performance by combining the predictions from multiple models [9]. Ensemble
learning methods have proven to be an appropriate tool to address multimodal fusion,
achieving comparable results or even outperforming other state-of-the-art methods in many
other domains [36,37]. The idea of ensemble learning is to employ multiple models and
combine their predictions. This is often more accurate than having a complex individual
model to decide about a given problem. Data from heterogeneous sources, such as dif-
ferent modalities [38], can easily be combined. In this paper, we consider an ensemble
of predictive clustering trees (PCTs) [10] to perform hierarchical multi-label classification
(HMLC). PCTs are a generalization of ordinary decision trees and have been successfully
used for a number of modeling tasks in different domains, i.e., to predict several types of
structured outputs, including nominal/real value tuples, class hierarchies, and short time
series [39,40]. A detailed description of PCTs for HMLC is given by Vens et al. [41].

3. Materials and Methods

In this section, we first describe the robotic workcell used to collect the data de-
scribed in Section 3.1. The assembly tasks to perform the evaluation are presented in
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Sections 3.2 and 3.3. Next, we present our contact determination method in detail. The ap-
proach consists of three main parts. First, force-torque sensor measurements are processed
using a method for contact point estimation described in Section 3.4. Data from the vision
modality are passed through a neural-network model performing instance segmentation
(Section 3.5), and features are extracted from the instance masks using standard computer
vision methods (Section 3.6). Finally, the features from both modalities are combined using
an ensemble of predictive clustering trees, as described in Section 3.7.

3.1. Experimental Environment

In our research, we focused on robotic assembly and considered two tasks—square
peg insertion using the Cranfield benchmark [42] and the industrially relevant car starter
assembly [43]. To perform both tasks and collect data for the context determination model,
we rely on a modular workcell design that enables easy mounting of task-specific equip-
ment, e.g., robots, sensors, and auxiliary devices [44] and a ROS-based software architecture
that allows for easy integration of new components [45].

The workcell consists of two modules and a control workstation. The first module
supports a seven-degree-of-freedom collaborative robot, Franka Emika Panda. The other
module is equipped with sensors and cameras to support the specific assembly process,
as shown in Figure 3. An Intel RealSense D435i RGB-D camera is used to supervise the
insertion visually. To control the light conditions, we utilize an adaptive lighting setup
based on Aputure Amaran F1 LED panels. Besides images, we can also capture forces and
torques. To measure the forces exerted in the peg-in-hole task, we utilize an ATI Delta
force-torque sensor mounted under the Cranfield benchmark plate. To measure the forces
exerted in the copper ring insertion task, we utilize a wrist-mounted ATI Nano25 sensor.
Additional peripheral devices, visible in Figure 3b, are used to assist different aspects of
the human–robot collaboration, which is not the subject of this paper.

(a) (b)

Figure 3. Experimental setup for testing exception strategy learning using multimodal data. (a) Setup
for the Cranfield benchmark. (b) Setup for the copper ring insertion task.

To perform the assigned tasks, we applied a passivity-based impedance controller
for manipulators with flexible joints [46]. We assume that the controller parameters were
carefully tuned to ensure stable and compliant operation in unstructured environments,
where we can expect deviations in task parameters.

3.2. Peg-in-Hole Insertion Task

The peg-in-hole (PiH) task is an abstraction of the most typical task in assembly
processes, accounting for approximately 40% of the total assembly tasks [47]. Over time,
many different approaches and control strategies to address this problem have emerged.
Nowadays, the efficiency of the applications is enhanced by integrating machine vision
and other sensor technology accompanied by artificial intelligence approaches. As such, it
is a commonly accepted benchmark in assembly research.

To generate a dataset for comparing different methods for failure context determina-
tion, we repeatedly executed the task of square peg insertion using the Cranfield benchmark.
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It requires the insertion of a square peg into the corresponding hole of the base plate. The
main challenge is the transition of the peg from free space into a highly constrained target
hole. Relatively tight tolerances combined with imprecise positioning can prevent the
successful completion of the insertion process.

Different factors influence the outcome of the PiH task. For instance, both imprecise
grasping and wrong target position can lead to insertion failure, as shown in Figure 4.

(a) (b) (c) (d)

Figure 4. Different outcomes of the PiH task. (a) Successful insertion with correct parameters.
(b) Insertion failure due to grasping error. (c) Insertion failure due to a positional error in the
x-direction. (d) Insertion failure due to a positional error in the y-direction.

In order to collect a database of different insertion outcomes, we deliberately set
different positional offsets in either the x or the y-direction from −10 to 10 mm in 1 mm
steps. In this way, we generated 40 cases that resulted in insertion failure and 1 that led
to successful insertion. Due to the offset, the robot fails to insert the peg and stops the
execution when it exceeds a force threshold, set to 10 N in the z-direction. The insertion is
successful when there is no positional offset in either direction.

In total 180 data entries were recorded. The robot attempted to insert the peg into the
plate three times for each failure case. Additionally, 60 successful attempts were recorded.
Robot pose, force and torque measurements, and RGB images of the outcome were captured
when the insertion was complete or stopped (force threshold exceeded).

Note that the data can be organized hierarchically into three categories (no error,
positional error in x direction, and positional error in y direction). The latter two categories
can be further split in half depending on the direction of the error (x/+, x/−, y/+, y/−).
Finally, we can split based on the magnitude of the error (e.g., x/+/2, meaning that we
have a 2 mm error in the x+ direction).

3.3. The Task of Inserting Copper Sliding Rings into Metal Pallets

The car starter assembly process includes inserting copper sliding rings into metal
pallets, as shown in Figure 5. This can be categorized as a multiple peg-in-hole problem, as
it is necessary to insert the bottom of the copper ring and both upper part lugs correctly.
The insertion process is challenging due to the deformability of the sliding rings. This task
has been taken from a real production process where it is performed manually. Previous
automation attempts have failed due to the low success rate that was achieved. To ensure
robust insertion, we proposed to use the exception strategy framework [43].

Figure 5. Left: Insertion of the ring into a modeling fixture. Center: Incorrect insertion. Right:
Correct insertion.
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We have collected a database of twelve copper ring insertions, which includes both
successful insertions and deliberately induced insertion failures. The failures were caused
by the displacement of the target position for insertion in the x and y directions:

• no displacement, leading to successful insertion;
• positional displacement in the x direction, with ∆px between 1 and 3 mm in 1 mm steps;
• positional displacement in the y direction with ∆py between 1 and 3 mm in 1 mm

steps, both leading to unsuccessful insertion.

Additionally, we recorded insertion attempts with deformed parts, which also led to
an unsuccessful insertion. For each of the cases, we recorded at least four insertion attempts.
The process was repeated for all four slot positions in the molding cast. Each entry consists
of a snapshot of the outcome of the insertion task (cropped RGB image) and the time series
of force F = (Fx, Fy, Fz) and torque T = (Tx, Ty, Tz) measurements. Similarly to the PiH
dataset, the gathered data can be organized hierarchically.

3.4. Force-Torque Data Extraction: Contact Vector Estimation

In our previous work [6], we have considered only errors due to the offset in the grasp-
ing angle and have shown that force-torque data can be used to determine a suitable context
descriptor using principal component analysis (PCA), which correlated most strongly with
the grasping error. Such a dimensionality reduction is beneficial because the generation
of an appropriate refinement trajectory based on statistical learning is sensitive to the
dimension of the feature space. Another possible approach to reduce the dimensionality of
force-torque measurements is to determine contact points [48].

The point of contact between two parts can be estimated based on the relationship
between force F, torque T, and lever r by using the following formulation [11]

r(α) =
F× T
‖F‖2 + α

F
‖F‖ , (1)

where α is a suitably chosen constant so that the vector r touches the environment as
illustrated in Figure 6a. The measured forces and torques must be expressed in the robot
end-effector coordinate system.

However, the contact point estimation cannot always distinguish between the differ-
ent types of errors, as illustrated in Figure 6b. Thus, forces and torques, as well as the
positional data, cannot uniquely determine the context. In order to resolve this ambiguity,
we introduce another modality, as discussed in the remainder of this paper.

Nevertheless, Equation (1) provides a suitable representation that can distinguish
between different conditions of the same outcome type. A graphical example of contact
vector estimation for both experiments is shown in Figure 7.

Our preliminary results have shown that the inclusion of raw force-torque data as
features decreases the performance of the final model. Thus the feature vector for the FT
modality was chosen to include only the contact point vector estimate. For each example
k ∈ E , the feature vector is calculated as:

fk
FT = (rx, ry, rz), (2)

where rx, ry, rz are components of the vector r(α).

(a) (b)

Figure 6. A scheme depicting contact point estimation (a) and another example where the grasped
part comes into contact with the environment at the same point (b). The robot and the gripper are
represented by the dark gray shape, whereas the grasped part and the environment are shown in
blue and black, respectively. The contact vector estimate is shown with a green arrow.
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(a) Correctly inserted peg

(b) Not fully inserted peg (c) Correctly inserted ring (d) Wrongly inserted ring

Figure 7. Contact vector estimation in four examples of the considered assembly tasks. A schematic
model of the Cranfield base plate and the casting mold is shown in (a–d), respectively. The green line
shows the contact vector, whereas the pink plus symbol shows the robot’s tool center point (TCP) at
the time of contact and the black cross shows the target reference position.

3.5. Vision Data Extraction: Instance Segmentation with YOLACT

We applied deep neural networks (DNN) to perform feature extraction from image
data. They provide good flexibility because pre-trained NN models and frameworks can
be re-trained by using a custom dataset for a specific use case, in contrast to the classic
computer vision (CV) algorithms, which tend to be more domain specific [49]. Compared
to the traditional computer vision methods (e.g., edge detection), they often require less
manual fine-tuning.

Various convolutional neural networks (CNNs) have proven to be suitable for analyz-
ing image data. An essential issue with a custom network that directly extracts features is
that retraining is needed when a new error class is added or the camera position is changed.
For these reasons, we rely on models that are designed to be less prone to changes in object
position in the picture. This has been extensively studied in object detection and instance
segmentation models. Instance segmentation is an enhanced type of object detection that
generates a segmentation map for each detected instance of an object in addition to the
bounding boxes.

In order to meet the above-listed requirements, we used the state-of-the-art instance
segmentation model YOLACT [12]. YOLACT builds upon the basic principles of Reti-
naNet [50] with the Feature Pyramid Network [51] and ResNet-101 [52] as a convolutional
backbone architecture for feature extraction. It utilizes a fully convolutional network to
directly predict a set of prototype masks on the entire image. Lastly, a fully connected
layer assembles the final masks as linear combinations of the prototype masks, followed
by bounding box cropping. Compared to most of the previous instance segmentation
approaches, such as Mask R-CNN [53], which are inherently sequential (the first image
is scanned for regions with object candidates, then each of them is processed separately),
YOLACT is a one-stage algorithm that skips this intermediate localization step. This allows
for nearly real-time performance. By using shallower computational backbones, such as
ResNet-50, even faster performance can be achieved at a minimal accuracy cost when
compared to ResNet-101 [12].

The (re)training of YOLACT requires labeled images and ground truth image masks.
We have used an open-source graphical image annotation tool, Labelme, to annotate
images in our datasets (https://github.com/wkentaro/labelme, accessed on 13 October
2022). For the PiH dataset, we manually annotated 30 images for each position using
four different light settings. We manually annotated 10 images for each position using
two different light settings for the copper ring insertion dataset. We split the annotated
datasets into training and validation partitions, with 80% and 20% of the data, respectively.
Finally, the annotations had to be transformed into a format compatible with the YOLACT
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training script (COCO). For this purpose, we prepared an open-source tool—labelme2coco
(https://github.com/smihael/labelme2cocosplit, accessed on 13 October 2022).

In the proposed pipeline, we configured YOLACT to use a computationally lighter
ResNet-50 as the backbone. This enabled us to use original-resolution images while re-
taining high training and inference speed. We trained two models for each of the above-
presented datasets. During training, the algorithm used a batch size of 8, weight decay
of 0.0005, and image size of 1280 × 720 pixels (PiH dataset) or 221 × 381 pixels (copper
ring insertion dataset). The initial learning rate was set to 0.001. The model was trained
for 40,000 iterations, and the decay rate of 0.1 was applied once each 10,000 iterations. The
training took 8 h on a GeForce GTX 1060 GPU for the PiH dataset and 6 h for the copper
ring insertion dataset.

Once the models were trained, we deployed them to a workstation in the robotic
workcell. The integration was done using a modified yolact_ros package (https://github.
com/smihael/yolact_ros, accessed on 13 October 2022), which also allows using the learned
model for inference without a GPU, thus lowering the computational requirements.

The results are shown in Figure 8. The PiH model is trained to distinguish between
the peg and the base plate, whereas the copper ring insertion model is able to distinguish
the following segments: gripper, mold, screws, ring base, wings, and ears (lugs).

(a) Correctly inserted peg

(b) Not fully inserted peg (c) Correctly inserted ring (d) Not fully inserted

Figure 8. Bounding boxes and masks obtained by YOLACT using snapshots of the outcome of
both tasks as input. For the PiH task (a,b), the base plate and peg are detected, regardless of the
position/occlusion of the latter. In the copper ring insertion task (c,d), the gripper, mold, screws,
ring base, wings, and ears are detected. Notice that ears are only detected when the part is not
fully inserted.

Note that the PiH model can be equally used for any of the two insertion slots in the
PiH task. Likewise, the copper rings model can be used for any of the four slots in the
copper ring insertion task. Since the model is position invariant, meaning that the model is
able to correctly mark the area of different image parts regardless of where in the image
they appear, we can apply it for the analysis of new error cases.

3.6. Extracting a Fixed-Size Feature Vector from Instance Segmentation Results

Using the trained YOLACT segmentation models, we obtain bounding boxes and
image masks for all images in the PiH and copper ring insertion datasets. The information
obtained from instance segmentation needs to be further processed to be used in further
steps of the pipeline, as shown in Figure 9. We extract fixed-size feature vectors, as
ensembles of predictive clustering trees do not operate over image masks.
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Figure 9. Image features extraction pipeline. The RGB snapshot of a situation is processed by a
YOLACT model to obtain masks of different parts of interest. The obtained masks are then processed
to obtain a low-dimensional fixed-size feature vector.

An image is represented as a w × h × 3 matrix of pixels I(x, y, c) ∈ {0, 1, . . . , 255},
representing the RGB color channels. The image can contain multiple instances of different
objects. For each segmented object instance s, we obtain its type, the bounding box, and the
mask. The bounding box Bs is given as a pair of pixel coordinates of two diagonal corners
{(x1, y1), (x2, y2)}. The bounding box can be represented by the centroid cs, width ws, and
height hs of the rectangle

cs = [cs,x, cs,y]
> =

[
x1 + x2

2
,

y1 + y2

2

]>
, (3)

ws = x2 − x1, (4)

hs = y2 − y1. (5)

The pixels belonging to the specific object instance s are represented with masks. Each
mask is a w× h binary matrix Ms ∈ Bw×h, which tells whether a pixel is part of the mask
or not. Using PCA, we determine the first principal component for each instance’s mask
es,1 = (x, y). This result can be used to calculate the orientation of the part in the image
plane (visualized in Figure 10)

ϕs = arctan
(−y

x

)
− π

2
. (6)

(a) (b) (c) (d) (e)

Figure 10. The extracted peg mask for different executions of the copper ring insertion task. Red and
green lines show the principal directions and determine the mask’s orientation. (a) ∆px = −10 mm;
(b) ∆px = −5 mm; (c) ∆px = 0 mm; (d) ∆px = 5 mm; (e) ∆px = 10 mm.
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Additionally, we calculate the pixel area of each instance mask as a total number of all
true elements in the instance matrix

as =
w

∑
x=0

h

∑
y=0

ms(x, y). (7)

In both experiments, we define a set of object of interests Sint (see Figure 8). For the
peg-in-hole insertion task, it consists of the peg only, while for the copper ring insertion task,
Sinst contains the gripper, ring, wings, and ear. Note that additional features, e.g., screws on
the molding cast or the base of the Cranfield benchmark, can be used as calibration features.
In our case, this was not needed as the datasets were recorded with a fixed camera position.

From the set of examples with no visible errors E0, we calculate the average segment
mask Ms for each object instance s of interest from Sint. The average mask is calculated as
the element-wise mean of the mask matrices:

Ms =
1
|E0| ∑

k∈E′
Mk

s ∈ Rw×h
+ . (8)

For other examples, we compute the difference between theirs masks and the average
mask of examples with no error M̃k

s,diff = Mk
s −Ms, and take only its positive elements to

define binary matrix Mk
s,diff,

mk
s,diff(x, y) =

{
1, m̃k

s,diff(x, y) > 0
0, otherwise

. (9)

An example is shown in Figure 11. For each of the obtained difference segments, we
then calculate its center cs,diff = [cs,diff,x, cs,diff,y]

> and pixel area As,diff using
Equations (3) and (7), respectively.

(a) Average no error (b) dy = −2 mm (c) Difference (d) Binary difference

Figure 11. From left to right: (a) average segmentation mask for the successful copper ring insertion
attempts, (b) segmentation mask for a failed insertion attempt (positional error in the y-direction),
(c) difference of the segmentation masks, and (d) positive part of the difference.

In this way, we obtain an image feature vector for each example k ∈ E and object of
interest s ∈ Sint:

fk
s =

[
ck >

s , wk
s , hk

s , φk
s , ak

s , ck >
s,diff, ak

s,diff

]>
. (10)

3.7. Combining Image Features and Force-Torque Measurements Using Ensembles of Predictive
Clustering Trees

We formulate the determination of the outcome of the insertion task as a hierarchical
multi-label classification (HMLC) problem. Given the extracted image features and the
estimate of the contact point, the type of outcome should be predicted. For the different
types of outcomes, a hierarchy of class labels defines the direction and magnitude of the
underlying error, as described below.
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We applied ensembles of predictive clustering trees (PCTs) [10] for this task. PCTs are
a generalization of ordinary decision trees [41]. Generally, in a decision tree, an input is
entered at the top and as it traverses down the tree, the data gets bucketed into smaller and
smaller sets until the final prediction can be determined. The PCT framework, however,
views the decision tree as a hierarchy of clusters: the top node corresponds to the cluster
containing all of the data, which is recursively partitioned into smaller clusters so that
per-cluster variance is minimized [39]. In this way, cluster homogeneity is maximized, and
consequently, the predictive performance of the tree is improved.

PCT ensembles consist of multiple trees. In an ensemble, the predictions of classi-
fiers are combined to get the final prediction. For an ensemble to have better predictive
performance than its individual members, the base predictive models must be accurate
and diverse [9]. The diversity between trees in the PCT framework is obtained by using
multiple replicas of the training set and by changing the feature set during learning, as in
the random forest method [54].

In our setting, each example k from the set of examples E consists of all extracted
features fk and the corresponding label vector lk. The feature vectors are obtained by
concatenating per-modality features:

fk =
[
fk

FT
>

, fk
1
>

, fk
2
>

, . . . , fk
|S|
>]>

, (11)

with fk
FT and fk

s , s = 1, . . . , |S|, defined as in Sections 3.4 and 3.6, respectively. To define the
corresponding label vector, we first observe that in HLMC, each example can have multiple
labels. Classes are organized in a hierarchical structure, i.e., an example belonging to a
class also belongs to all of its superclasses. The resulting ordered set of classes is used to
define a binary label vector lk ∈ BL. The components of lk are equal to 1 if the example is
labeled with the corresponding class and 0 otherwise. L denotes the number of all classes
in the hierarchy.

For the PiH task, the set of labels at the first hierarchical level consists of “no error”,
and “x” and “y” for the error in one of the two directions. At the second level, we have
“x+” and “x−” as subclasses of “x”, and “y+” and “y−” as subclasses of “y”. Likewise, we
have “x + 1”, “x − 1”, “y + 1”, “y − 1”, “x + 2”, . . . , “y − 10” at the third hierarchical level.
For the copper ring insertion task, the set of labels at the first hierarchical level consists
of: “no error”, “bad part”, and “x” and “y” for the error in one of the two directions.
Similarly, as in the PiH task, the sub-classes at the second and third levels are representing
various magnitudes of error (ranging from−10 to 10 mm in 1 mm steps) in both considered
directions (x and y).

In summary, to train the ensemble of predictive trees, we collect the dataset E

E = {fk, lk}K
k=1. (12)

After training we can use the resulting ensemble of predictive trees to predict the
labels l given the extracted feature vector f.

We trained multiple ensembles for two different tasks. See Section 4 for more details.
We used PCT ensembles, i.e., random forests of PCTs, as implemented in the CLUS system
(CLUS is available for download at http://source.ijs.si/ktclus/clus-public, accessed on
13 October 2022) for this purpose. Each ensemble consisted of 50 trees. As a heuristic to
evaluate the splits in decision trees, we used the variance reduction [39]. The variance for
the set of examples E is defined as the average squared distance between each example’s
label vector lk and the set’s mean label vector l̂, i.e.,

Var(E) = 1
|E |∑k∈E d(lk, l̂)2 (13)
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The distance measure used in the above formula is the weighted Euclidean distance:

d(l1, l2) =
√

∑L
i=1 w(ci)(l1,i − l2,i)2, (14)

where the class’s weight w(ci) depends on its depth within the hierarchy. The similarities
at higher levels in the hierarchy are considered more important than the similarities at
lower levels. Therefore, the class weights w(ci) decrease with the depth of the class in the
hierarchy. w(ci) is typically set as wd

0, where d is the depth of the label in the hierarchy: w0
was set to 0.75 in our experiments. The number of randomly selected features at each node
was set to b

√
Lc+ 1, where L is the total number of features.

To combine the predictions of all classifiers in the ensemble and obtain the final
prediction, their average is taken.

4. Results

In this section, we evaluate the performance of our proposed approach along two
dimensions: its generalizability to handle unseen data and the effect of including/excluding
features from separate modalities. Finally, the setup was experimentally verified in the
robotic workcell.

4.1. Generalizability of Classification

In order to verify how well the approach can generalize to unseen data, we train a
model on a subset where we do not include any examples of a particular outcome case.
Since the database for the copper ring insertion task is not sufficiently fine-grained, this
aspect was evaluated only for the peg-in-hole task. We excluded all cases where the
positional error in any direction equals 5 mm and observed if the model could correctly
predict the direction of error for the excluded examples. The results are shown in Figure 12.
The model correctly predicted the direction of error for all the excluded examples, both
at the first and the second level of hierarchy. As the predictions at the third hierarchical
level describe the magnitude of error, they can also be evaluated using root mean square
error (RMSE). At the third hierarchical level, it assigned all the excluded examples to the
closest lower error class that was presented in training for the x direction (RMSEx = 1 mm),
whereas for the y direction it did so for 4 of the 6 examples (resulting in RMSEy = 1.91 mm).
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Figure 12. Confusion matrices for classification at different levels of the hierarchy. (a) First level of
hierarchy (x or y displacement). (b) Second level (negative or positive displacement). (c) Third level
(magnitude of x displacement); (d) Third level (magnitude of y displacement).

4.2. Single Modality versus Multimodal Models for Classification

We assessed the effectiveness of including/excluding features from the individual
modalities by training multiple PCTs on different subsets of features for both tasks:

• only features based on the image data (see Section 3.6);
• only features based on the force-torque sensor data (see Section 3.4);
• features from both modalities.

Models were trained using 80% of the data and tested on the remaining 20% of
the data.
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The results for the PiH task are given in Figure 13. We found out that the model
performed best when all features were included, indicating that the features from both
modalities are complementary and improve the model’s performance. The overall classi-
fication accuracy was calculated for the multi-class classification problem by taking the
sum of the true positives and true negatives for each label, divided by the total number
of predictions made. The accuracy was then averaged by support (the number of true
instances for each label). For the model that uses all features, the overall classification
accuracy at the first hierarchical level was 0.98. At the second level, the accuracy was 1.0.
For the third level, the overall classification accuracy was 0.68. For error classes in the x
and y directions, the classification accuracy was 0.55 and 0.5, respectively. For the model
that only uses features from the vision modality, the overall classification accuracy at the
first two hierarchical levels stayed the same, indicating that vision features can distinguish
well between different types of outcomes. The overall classification accuracy at the third
level was 0.68, and 0.5 and 0.55 for the x and y directions, respectively. When evaluating
the model that only uses features from the FT modality, the overall classification accuracy
at the first level dropped to 0.92, at the second to 0.95, and at the third to 0.61, whereas it
was 0.5 and 0.35 for the x and y directions, respectively.

The results for the copper ring insertion task are given in Figure 14. Similar to before,
we found that the model performed best when all features were included. For the model
that uses all features, the overall classification accuracy at the first two hierarchical levels
was 0.88. For the third level, the overall classification accuracy was 0.81. For error classes
in x direction, the classification accuracy is 0.67, and 0.9 for y direction. For the model that
only uses features from the vision modality, the overall classification accuracy at the first
two hierarchical levels dropped slightly to 0.85. The overall classification accuracy at the
third level was 0.62, and 0.5 and 0.6 for the x and y directions, respectively. The drop was
even more pronounced when evaluating the model that only uses features from the FT
modality. The overall classification accuracy at the first level was 0.81 and at the second
and third it was 0.77, whereas it was 0.58 and 0.9 for the x and y directions, respectively.
When comparing the results of the vision- and FT-features-only models, it is evident that
while the earlier achieved a higher overall accuracy, the latter achieved higher accuracy
when distinguishing among different magnitudes of error in the y direction.

4.3. Verification of Error Context Determination for the Generation of Exception Strategies

The proposed framework was experimentally verified on both the PiH and the copper
ring insertion task. The initial PiH policy was carefully programmed and executed in the
workcell with the same setup as described in Section 3.2. In order to cause an exception,
the target position was displaced by 6 mm. The proposed approach correctly estimated
the error context to “x/-/6”. Since the exception strategy for this case has not yet been
programmed, the robot stopped and prompted the operator. Using kinesthetic guidance,
the operator guided the robot back along the policy to an appropriate point, where it is
possible to resume the operation. The operator then demonstrated the correction, which
resolved the problem. When we displaced the target position by 6 mm again, which
resulted in a similar outcome, the robot again classified it as “x/-/6”. As the exception
strategy is now known, the robot could resolve the situation using the demonstrated
exception strategy. In a similar manner, the operator demonstrated policies for the case
where the target was displaced by 4 mm in a positive x direction. When we displaced the
target position by 5 mm, the robot correctly classified the context to be “x/-”, whereas the
magnitude was not determined precisely (4 mm) as we used the model that did not include
error contexts of this magnitude in the training set. Nevertheless, by combining the policies
demonstrated for the other two cases in the “x/-” category and using locally weighted
regression, as proposed in [6,43], the robot was able to perform the insertion successfully.
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Figure 13. Confusion matrices for the PiH use case.
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Figure 14. Confusion matrices for the copper ring insertion task.

When inserting a sliding ring into the casting mold, there are two major types of errors.
The first type is when the base of the ring is not properly seated into the model (see Figure 5
middle). This type of error mainly arises due to imprecise grasping or due to errors in
the target position. The second type of error occurs when the sliding ring is deformed.
Both types of error can be reliably determined by using the proposed approach. We first
displaced the target position by 2 mm in the negative y direction so that the insertion
failed. As the exception strategy for this case has not yet been programmed, the operator
demonstrated how to resume the operation and resolve the issue using iterative kinesthetic
guidance [7]. When the target was displaced by the same offset again, the robot was able to
resolve the problem. We also started the insertion procedure with a deformed part. It was
correctly determined, and the robot placed it into the bin for deformed parts. An example
video of both experiments can be found in the Supplementary Materials.
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Note that the application of the exception strategy learning framework does not affect
the cycle time in successful attempts. Once the model is deployed, the time to obtain
context estimation is negligible. In unsuccessful attempts, where an alternate policy needs
to be demonstrated or executed, the cycle time is, however, prolonged. However, since
these situations are less frequent, this has very little effect on the average cycle time of an
automated line.

5. Discussion

The results of our study indicate that the application of multimodal features leads to
an improved classification accuracy of the ensemble models employed for classification.
This implies that the features are complementary and taken together provide greater
discrimination power than the features stemming from a single modality. Prediction
errors that arose when applying vision-only-based models, showed the limitations of
two-dimensional image data, thus depth information should be considered in the future.

It is important to note that, to a large extent, the models were able to correctly assign
error types to examples with a magnitude of error not included in the training data. This is
a critical finding as it indicates that the computed models are robust and can be used in
real-world applications, also in less-structured non-industrial environments, where error
types can not be predicted in advance. To evaluate this aspect, we excluded all examples
with a certain magnitude of error from the training set. The results show that the models
still perform well, indicating that they are not overfitting the training data.

Based on the observation that features obtained from different modalities contributed
to improving the classification results at different levels, a more explicit hierarchical pipeline
could be considered in the future, exploiting the robot as an agent that can interact with the
environment. Data from different modalities would contribute towards the final prediction
at different stages of the process, consisting of, e.g.,

(1) the type of error (due to positional displacement, part geometry, imprecise grasping),
determined based on image data;

(2) the magnitude of error, based on force-torque or depth data.

The context determination does not have to occur instantaneously but can include
exploring the environment as part of the pipeline. We could first use the vision data
to determine the direction in which the robot should move in order to reduce the error
(left/right). The robot can then move in this direction until it detects a new state (one
of the force-torque components changes or a compliant robot stops moving as it hits an
obstacle—see [55]). In the newly found state, the robot again estimates the direction in
which it needs to continue or stop.

In the future, we intend to expand the proposed approach by considering other
possible error types (e.g., arising from erroneous orientation when grasping) and their
combinations (displacements in multiple degrees of freedom at the same time), as well as
properly handling continuous data (regression at the lower hierarchical level instead of
classification). We believe that the presented framework is not only applicable to learning
error context but could also be extended to cognitive systems that will be able to respond
autonomously to changes in the environment. To achieve these goals, the improved
versions of our approach should consider additional modalities and alternative features
extraction methods.

6. Conclusions

In this work, we have proposed a novel method for context determination based on
multimodal features that can be used for learning exception strategies in various assem-
bly tasks.

Our approach was validated on two tasks, the classic peg-in-hole, and the copper
ring insertion. To evaluate its effectiveness, we deliberately induced different types of
errors, which led to failed task executions. Using the proposed approach, the error type
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was correctly obtained in all cases, allowing for correction of the task execution parameters
and finally leading to successful task performance.

The study results indicate that the features used in the ensemble models are com-
plementary and that the multimodal setup achieves the highest classification accuracy.
Moreover, the model can correctly assign error types to examples with an unknown
error magnitude.

In the current implementation, the context was calculated based on the measurement
of forces and torques and RGB sensor data. The introduction of further sensor modalities
(such as depth data) could lead to a further increase in classification accuracy.
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