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1 Executive summary

This deliverable reports the key performance indicators (KPIs) developed for robotic operations
and processes dismantling electronic devices, considering the latest relevant standards. We suc-
cessfully adapted and applied ISO 22400 for KPIs in manufacturing operations management and
MRED (Multi-Relationship Evaluation Design) developed by NIST (National Institute of Standards
and Technology) to the recycling domain. Based on these standards, we derived specific KPIs for dif-
ferent use cases and established their target values. The integrated use cases were implemented and
tested. The project’s performance was thoroughly assessed against the KPIs outlined in Task 5.3. The
results demonstrate that the project successfully met the established KPIs, with all targets achieved.
Furthermore, recommendations for enhancing the work were provided where necessary, ensuring that
the project met its objectives and paved the way for potential future improvements.
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2 Introduction and Background

The diversity and model variety of electronic waste necessitates more adaptable methods for recy-
cling, driving the demand for innovative automation concepts. Despite these needs, electronic waste
recycling remains largely unautomated due to high setup costs, lengthy setup times, and lack of adap-
tive flexibility. The primary goal of the ReconCycle project is to introduce this flexibility into a
cost-effective robot workcell concept, enabling automated robotic disassembly of various electronic
devices.

Performance benchmarks are typically structured as modular sets of task-based tests. For example,
the NIST task boards are designed for assembly operations (e.g., simple insertions, threading, snap-
fitting, meshing, routing), as shown in Fig.1 and Fig.2. These benchmarks focus on assembly tasks
by analyzing them through measurement science to identify key metrics and potential test methods.
Reconfigurable tests incorporate various assembly tasks using standard components like screws, nuts,
washers, gears, and electrical connectors, drawing from factors identified by Boothroyd-Dewhurst
(B-D) design for assembly (DFA) studies.

However, while these NIST task boards provide a robust framework for assessing assembly op-
erations, they fall short when applied to disassembly operations, which present unique challenges
not adequately covered by existing benchmarks. Disassembly involves processes inherently more
complex and less predictable than assembly, such as dealing with the variability and degradation of
materials, safely handling hazardous components, and efficiently separating mixed materials. These
tasks require more extensive experimental setups and specialized metrics beyond what is provided by
the NIST boards or any other standard assembly-focused benchmarking tools [9].

For example, while assembly tasks often focus on precision and repeatability, disassembly must
account for the disorderly and often destructive nature of breaking down devices. These processes
can vary widely depending on the condition and design of the electronic waste. This variability
requires a benchmarking system that can handle various scenarios, including dynamically adapting to
different disassembly processes. Consequently, the ReconCycle project emphasizes the development
of tailored benchmarks and experimental setups that specifically address the complexities of robotic
disassembly, ensuring that the KPIs and performance metrics are comprehensive and relevant to the
unique demands of this field.

Figure 1: NIST assembly task board. Figure 2: An example of disassembly task board pro-
posed in [7].
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3 Reconcycle KPIs and use-cases

The robotic work cell for dismantling the electronic devices, which was developed in the ReconCycle
project, was benchmarked by measuring:

• The success rates of action choices and parameterizations made by the ReconCycle system in
specific numbers of different exemplars from different device types and available actions arising
from the use cases.

• The number of suitable actions planned and executed by the system to recover from specific
failures.

• The number of suitable actions generated and executed for situations distinct, in specific ways,
from those the system had encountered while creating the archetypical solution.

• The execution times of the individual steps required to address the use cases. Here, we quantify
the work cell’s performance relative to human performance.

Furthermore, we grouped our KPIs based on the work packages in the project.

3.1 KPIs in WP1 for Hardware and Software Setup and Dismantling Processes

The target KPIs for these processes are:

• Robustness and reliability of inserting electronic devices into the work-holding devices: over
95%

• Robustness and reliability of battery extraction from different electronic devices: over 90%.

• Cycle time of the dismantling process of a device involving self-reconfiguration or process
adaptation < 90 seconds.

• Time of hardware reconfiguration and software changes when switching the dismantling pro-
cess from one known device to another known device within the same family of devices: less
than 2 minutes.

• Time of hardware reconfiguration and software changes when switching the dismantling pro-
cess from a known device of one family to a known device of another family: less than 5
minutes.

• Time of hardware reconfiguration and software policy adaptation when switching the disman-
tling process from a known device to an unknown device within the same family of devices,
provided that the same sequence of operations can be applied (albeit with changed parameters):
less than 15 minutes.

• Reconfigurability/adaptation index (RAI): the percentage of devices from a device family that
can be dismantled without manual intervention when switching from one device to another:
over 33%.

• Exception detection index (EDI): the percentage of detected workpieces that can’t be disman-
tled but are correctly classified as such: over 70%.
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Figure 3: Examples of successful clamping operations for an HCA (left) and a smoke detector (right).

3.1.1 Robustness and reliability of inserting electronic devices into the work-holding devices

We utilize various work-holding devices (fixtures) at different stages of disassembly for electronic
devices. Successful insertion into the work-holding device is achieved when the electronic device is
firmly clamped, allowing us to proceed with subsequent operations.

For disassembling heat cost allocators (HCAs), we use a pneumatic vise equipped with two pairs
of jaws: one pair aligned perpendicular to the narrow side of the device, and the other aligned per-
pendicular to the longer side.

We first evaluated the insertion of a short-type HCA with an intact plastic housing (no missing
exterior walls). The robot, after correctly grasping the short-type HCA, approaches a predefined
position above the fully opened vise and releases the device. The pneumatic mechanism then triggers
the vise to close both pairs of jaws. Under these conditions, we performed 50 trials and successful
clamping was achieved in every instance.

The procedure was similar for the long-type HCA with no damage to its plastic housing. However,
when dropped into the open vise, the HCA occasionally rotated, causing the mechanism to jam. To
prevent this, we first closed the side jaws, followed by the jaws along the principal axis. With this
approach, we conducted 50 trials and achieved successful clamping in 49 cases.

For disassembling smoke detectors, we use a three-jaw chuck to secure the devices before cutting
them open with a CNC mill. This procedure was tested on circular smoke detectors with diameters
between 100 and 116 mm. Once dropped into the opened chuck, a pneumatic mechanism activates to
close the jaws. Under these conditions, we conducted 50 trials and achieved successful clamping in
every case.

Examples of successful HCA and smoke detector clamping are depicted in Fig. 3. Depending on
the device type, the sucess rate of clamping was betweem 98-100%, exceeding the target KPI of 95%.

3.1.2 Robustness and reliability of battery extraction from different electronic devices

This KPI varies based on the type of device, whether it is a known model or an unknown variant, and
the success of preceding operations. We evaluated two different types of HCAs, assuming correct ex-

Page 6 of 26



Figure 4: Battery removal by rocking

ecution of the process – specifically, that the PCB with the attached battery was accurately positioned
within the pneumatic cutter, with the cutting blade aligned parallel to the battery. The robustness of
this process depends on the placement of the PCB, requiring adjustments for non-standard position-
ing. The proposed solution assumes that the battery is located at the end of the PCB, which was true
for both HCA types we assessed. For devices where the PCB is positioned differently (e.g., in the
center), multiple cuts may be needed to ensure successful extraction.

Reliability was tested in 20 trials, all of which resulted in successful cuts, effectively separating
the battery from the PCB.

There are various methods for extracting batteries from the PCB in smoke detectors, depending
on the type of detector. Battery contacts can be severed by using a rocking motion, milling away the
contacts, or cutting the wires. We evaluated a smoke detector type where the battery contacts were
broken using a rocking motion, as shown in Fig. 4. We assumed that the smoke detector was securely
clamped in the fixture, the plastic housing was precisely cut open, and the battery was correctly
located for the VS gripper to grasp it. While holding the battery, the robot performed a rocking
motion to apply force on the contacts, pulling them apart. The process was deemed successful when
no counter-force was detected, at which point the robot transported the still-grasped battery to the
designated bin. The maximum duration for the rocking process was set to 25 seconds. If counter-
force was still detected after this time, the process was considered a failure, triggering an exception
strategy for handling devices with overly strong battery contacts.

Out of 20 battery removal attempts, 18 were successful. The failures primarily occurred during
the contact-handling step. In one case, the contacts remained attached to the PCB, causing the entire
PCB to be dislodged from the smoke detector case. In the second failure, the extraction process
immediately broke one of the two contacts, causing the remaining part to rotate around the intact
contact instead of breaking it. This contact was not removed within the maximum process duration,
and these cases were left for manual disassembly.

We observed that, for the device types used in our experiments, the remaining contacts could be
removed by extending the rocking motion for a longer duration. However, this significantly increases
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the disassembly time.
Thus, depending on the device type, the reliability of battery extraction process was between

90-100%, achiveing the target KPI of 90%. These findings highlight the importance of precise and
adaptable handling mechanisms tailored to specific device types to ensure high reliability in battery
extraction across a range of electronic devices.

3.1.3 Cycle time of the dismantling process

The cycle time for the entire disassembly process varies depending on the device. Even when dis-
mantling the same type of device, individual variations can arise, significantly impacting the forces
required for tactile operations. To manage these variabilities, we employ different adaptation tech-
niques. Since the duration of these adaptations can fluctuate, we provide time intervals within which
specific disassembly operations are typically completed. Additionally, we define parameters to deter-
mine when an operation is considered unsuccessful, preventing the process from becoming stalled.
The devices handled by our disassembly processes are shown in Fig. 5.

Below we list the typical disassembly operations involved in the dismantling process. They often
involve adaptation or self-reconfiguration and therefore vary in duration.

• PCB levering: 15-30 sec (parameter determination for unknown or deformed parts), 5 sec (for
known device models).

• Pin pushing: 3-9 sec (depends on the number of attempts to remove the pin).

• CNC contact breaking: 5 sec initialization + 2–5 sec execution (depends on the cut size).

• Breaking battery contacts by a rocking motion: 5-25 sec.

• Cutting of housing by CNC milling: 5-sec initialization + 10–30 sec execution (depends on
the cut size).

• Opening housing by unscrewing: typically 10-40 sec (depending on the contact determination
time).

Figure 5: Devices used in our disassembly experiments.
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• Opening housing by levering using a variable stiffness gripper: 60 sec.

Scene analysis and action prediction queries also vary in duration:

• Queries to the vision system (depends on camera resolution, camera frame rate, graphic card,
and task): typically 0.1 sec (instance segmentation), up to 3 sec (gap determination) – see WP2.

• Queries to the VLM system: typically 2–3 sec using the GPT-4-turbo model via OpenAI API,
limited to 5 sec (response time depends on the number of input and output tokens generated by
the model).

Other operations include:

• Point-to-point movements (transferring objects, approaching positions): typically 1-5 sec.

• Tool changing operation: 15 sec.

• Grasping using pneumatic grippers: typically 1 sec.

• Grasping using soft grippers: typically 3 sec.

• Flipping of incorrectly placed devices: 10 sec.

• Cutting using a linear pneumatic cutter: typically 2 sec.

The cycle times for the dismantling of a complete device varied depending on the type of the
device. The average cycle times for different devices were as follows:

• 80 sec for long-type HCA disassembly, including tool changing (D5.2) and adaptation (D5.4).

• 75 sec for short-type HCA disassembly, including adaptation (D5.4).

• 110 sec for a smoke detector disassembly with breaking battery contacts by a rocking motion
(D5.5).

• 70 sec for a smoke detector disassembly with CNC cutting of the housing (D5.5).

Although the disassembly cycle duration occasionally exceeds the target KPI of 90 seconds, most
devices can be disassembled within 90 seconds, which is a technical requirement for the reference
software and hardware platform.

3.1.4 Reconfiguration time from a known device to another known device within the same family
of devices

Switching from one defined process to another at the software level only requires the operator to
load a new task sequence. The process may also involve changing device-specific robot tools, which
the operator is instructed to manually place in the correct fixtures. Since the tools are not stored
elsewhere, the time required for this is negligible. In any case, in all our use cases the tools needed for
different devices within the same family were housed in a dedicated tool-changing station, eliminating
the need for manual intervention. The time for this, including program initialization and tool change,
is negligible and does not exceed the target KPI of 2 minutes.
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3.1.5 Reconfiguration time when switching the dismantling process from a known device of one
family to a known device of another family

Changing from one device family to another typically involves exchanging modules in the work cell
(e.g., adding a cutter module for cutting PCBs in HCA disassembly). Detaching and attaching a
module typically takes around 4 minutes. The modules are automatically initialized within 50 seconds
and connected to the ROS network. The operator then needs to load another task sequence. The time
required for this is negligible, as already discussed in Sec. 3.1.4. Thus the achieved reconfiguration
time is always below the target KPI of 5 minutes, usually significantly less.

3.1.6 Reconfiguration and software policy adaptation time when switching the dismantling process
from a known device to an unknown device within the same family of devices

The target KPI for this was 15 minutes because we have initially foreseen more complex adaptation
processes. However, for less complex adaptation processes implemented within the workcell such as
levering, unscrewing and rocking motion, the achieved adaptation time is significantly lower, i.e. less
than 40 seconds.

3.1.7 Reconfigurability/adaptation index (RAI)

This metric measures the percentage of devices within the same family that can be dismantled without
manual intervention when switching from one device to another. This applies to all devices we con-
sidered, as we have accommodated all necessary tools for the considered devices on a dedicated tool-
changing station. For example, the same workcell setup was used to disassemble two different HCA
models, and a different configuration managed three distinct smoke detector models without manual
intervention. For these devices, the RAI is 100%, exceeding the target value of 50%. However, as
additional devices enter the recycling process, it cannot be guaranteed that they can be disassembled
within the existing reconfigurable hardware. This limitation underscores the importance of optimal
hardware design.

3.1.8 Exception detection index

This index measures the effectiveness of our system in handling exceptions, specifically its ability to
identify objects that cannot be dismantled. Correctly classifying such objects is important to prevent
the application of incorrect procedures and to avoid damaging hazardous components.

We have incorporated Vision-Language Model (VLM) based action prediction to implement ex-
ception handling for unknown devices. In our testing environment, which included nine different
device models (HCAs and smoke detectors), the system successfully predicted in 85% when none
of the available actions were applicable. For instance, it accurately identified situations where wire
cutting was not possible. This ensures that the dismantling process is halted before any inappropriate
or potentially damaging actions are taken.

The accuracy of the VLM in predicting the correct next disassembly action (or halting of the
process if needed) was tested in various disassembly steps and with varying conditions (i.e., locations
and orientations of the smoke detectors, states of the smoke detectors and heat-cost allocators). Within
the limited set of nine devices, we have thus achieved and exceeded the target KPI of 70%.
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3.2 KPIs in WP2 for Vision Processes

The vision system is responsible for the recognition and pose estimation of the devices, including
their parts. Actions can be performed in the workcell based on these detections. We examine the
KPIs defined at the project’s beginning and determine if they have been met.

3.2.1 Instance Segmentation Accuracy for Recognition and Pose Estimation

We use instance segmentation to find devices and their components from images. Instance segmenta-
tion is a computer vision task that identifies and delineates each object in an image at the pixel level,
distinguishing between different instances of the same object category. It combines object detection
and semantic segmentation to classify objects and provide precise boundaries for each instance.

While these methods do not provide direct object pose estimation, they can serve as a first step
in the process. If we have certain information about the object, such as its height and the camera’s
orientation relative to the object – by, for example, restricting the camera to a top-down view – we
can estimate the object’s pose using the segmentation mask. Though this approach has limitations, it
also offers advantages. The limitation is that the pose estimation is less detailed compared to 6D pose
estimation methods. However, the advantage is that object labeling is faster, and labeling and training
on internal device components are much simpler than with 6D pose estimation methods.

Mean Average Precision (mAP) is a metric used to evaluate the accuracy of instance segmen-
tation models. It calculates the average precision for each class at various Intersections over Union
(IoU) thresholds, considering both precision (how many detected objects are correct) and recall (how
many true objects are detected). Essentially, mAP represents the area under the precision-recall curve.
We denote mAP with an IoU threshold of 50% as mAP@50. For evaluation we use the average of
mAP@50, mAP55, . . . , mAP95, denoted as mAP@50-95. For our model, we examine the mAP@50-
95 for both box and mask tasks. The box is the bounding box of the mask aligned with the image.

We use the Yolov8 [2] segmentation model, which is currently one of the most performant seg-
mentation models. It outperforms YOLACT [1], which we initially used at the start of the project.
While the standard image size for Yolov8 is 640x640, we increased this to 1280x1280 for improved
resolution. Additionally, we opted for the P2 model over the standard model due to its superior
performance in detecting small details, such as screws and wires.

We created a dataset of 4458 images containing all the classes shown in Table 1. The dataset was
augmented to 20,000 images by changing the background of the images, varying the lighting, and
putting multiple devices on the same image. These augmentations enhance the model’s robustness
against irrelevant background objects and changing lighting conditions.

The dataset also includes separate labels to indicate whether a device is empty. This labeling
choice allows the model to determine if a device has been fully disassembled. For HCAs, the possible
classes are front, back, and back empty. The “back” and “back empty” classes indicate whether the
back of the device is shown and whether it is empty of components. For the smoke detector, the
possible classes are front, back, insides, and empty. It is not always clear from an image whether
the front or back of the smoke detector has been removed to reveal the components. herefore, the
“insides” class is used when the internal components are visible. The “empty” class is applied when
the housing of the smoke detector has been emptied of its components..

The device components are categorized into the following classes: battery, PCB, plastic clip,
wires, and screw. For battery and PCB, we also have an additional “covered” class, representing
instances where the battery or PCB is partially visible but obstructed by plastic housings. The “in-
ternals” class corresponds to miscellaneous internal parts that do not fit into the other categories. It
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often consists of plastic components used in the device assembly.
The results are shown in Table 1. The HCA (front, back, back empty) box mAP@50-95 is around

95%. For the mask, we score mAP@50-95 of 75%-96%.

KPI: HCA box mAP@50-95 larger than 95% satisfied.

The pose of the HCA is determined directly from the mask segmentation up to its rotational
invariances when the battery is not detected. On a test of 60 HCAs, front and back, we score 100%
accuracy for the correct rotation.

KPI: orientation of device correct 95% accuracy satisfied.

The smoke detector (front, back, insides, empty) box mAP@50-95 is around 96% and the mask
mAP@50-95 score is between 83% and 95%. Since the device’s orientation cannot be determined
from the mask when internal components are not visible because of the circular design of the devices,
we use a different method for rotation estimation (see Section 3.2.2).

KPI: smoke detector box mAP@50-95 larger than 95% satisfied.

The battery has box mAP@50-95 of 88% and mask mAP@50-95 of 82%.

KPI: battery box mAP@50-95 larger than 95% NOT satisfied.

The other components of the device: internals, PCB, PCB covered, plastic clip, score a box
mAP@50-95 of 89%-95% and a mask mAP@50-95 of 85%-93%.

KPI: Remaining device internal components box mAP@50-95 larger than 85% satisfied.

The wires achieve a box mAP@50-95 of 96% and a mask mAP@50-95 of 60%, while the screws
achieve a box mAP@50-95 of 58% and a mask mAP@50-95 of 47%. The challenge with detecting
both wires and screws lies in their small size, as they often occupy only a few pixels in large images,
making detection difficult. To address this, we switched to the YOLOv8 p2 model, which enhances
the performance in detecting small features. For optimal results in screw and wire detection, the
object should occupy a significant portion of the image.

Class Instances Box(mAP@50-95) Mask(mAP@50-95)

all 7209 0.903 0.84

HCA front 429 0.978 0.958
HCA back 414 0.962 0.749
HCA back empty 342 0.94 0.909
smoke det. front 396 0.958 0.947
smoke det. back 416 0.936 0.915
smoke det. insides 393 0.947 0.829
smoke det. insides empty 371 0.945 0.927
internals 530 0.952 0.927
battery 995 0.88 0.823
battery covered 302 0.917 0.875
PCB 862 0.893 0.853
PCB covered 398 0.935 0.917
plastic clip 366 0.946 0.869
wires 593 0.822 0.598
screw 378 0.576 0.468

Table 1: YOLOv8 results on test set.
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The pose of the battery is also determined directly from the mask segmentation up to its rotational
invariances.

3.2.2 Rotation Estimation Accuracy

The pose consists of position and rotation. The position is found using the results of segmentation.
The rotation can also be found from the segmentation up to its rotation invariances. The correct
rotation from the invariances can be chosen if other features are found by the segmentation method.

When this is not the case, a device’s rotation can be found by finding local features in the device’s
image and matching them with the template definition. The device’s rotation can be found if enough
local features are matched. To achieve this, we use SuperPoint [12] for keypoint and descriptor ex-
traction and SuperGlue [11] for feature matching. We extend the augmentations for the of training
SuperGlue and achieve the results shown in Table 2. We find that we can estimate the rotation cor-
rectly to a degree on the test set, containing both devices seen in training and devices not seen in
training.

Seen Test Unseen Test

Med Mean Std. Med Mean Std.

L1 difference in degrees 0.19◦ 0.40◦ 0.73◦ 0.26◦ 0.46◦ 0.95◦

Table 2: Performance of SuperGlue on the test set for rotation estimation

These results show that SuperGlue can estimate the rotation to within a degree. However, the
images used to test the model are synthetically generated rotations of the same device. Therefore, this
task is easier than with real-world differing perspectives of devices.

We use the SuperGlue-based method to determine the rotation of smoke detectors. On a test set of
60 images of smoke detectors, we achieve 83% accuracy in correct rotation. The poorly performing
cases are where the device has many symmetries and no clear features to guide SuperGlue to the
correct orientation. On a subset of those, ignoring devices with little to no features to show the
correct orientation, we achieve 92% accuracy. On images of smoke detectors showing the back of the
device, we achieve 100% accuracy. The backs make it a lot easier to determine the rotation because
there are many features to guide it.

KPI: orientation of device correct 95% accuracy is satisfied under the constraint that the device must
have clear features.

3.2.3 Device Classification Accuracy

The dataset for device classification consists of images of HCAs and smoke detectors. The images
are of the front and back of the device and of the device in various states of disassembly. We have cat-
egorized the devices as shown in Figure 6. We chose this categorization based on a few observations.
Some devices are physically the same, except for a different brand written on them, in which case we
say they are the same. Some devices are almost the same except for some small variations. This can
be when the front of the device is the same, but the back has some variation, like for example missing
an element, a different tab layout, or a color variation. In these cases, we say they are a derivative of
the same device, and we give it a name of x.y, where x is the main class number (see Figure 6).
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There are 13 unique HCAs and 10 unique smoke detectors. Accounting for the variations in
models, there are altogether 60 classes:

• 14 HCA fronts

• 16 HCA backs

Figure 6: Chart of devices. The back and front are shown for each device, including the variations.
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• 15 smoke detector fronts

• 15 smoke detector backs

The train/val/test split was 0.8/0.1/0.1, with the number of images in each class being 1328/183/183.
The split has been constructed such that the validation and test sets contain uniform images over the
classes.

We obtained 99.1% overall accuracy on the test set. HCA back two scores 75% accuracy, confus-
ing it with HCA back 4. HCA back seven scores 75%, confusing it with HCA back 1.1

KPI: the device should be labelled correctly 95% of the time, satisfied.

3.2.4 Accuracy of Pixel to 3-D Position Mapping

We implemented a mapping that determines the position of objects in real-world coordinates using
an RGB-D camera mounted to the robot end-effector and the RGB camera mounted above the work
surface. First we determine the location of objects in an image in pixel coordinates. We If available,
depth information is then used to determine the real-world object pose. For an RGB image without
depth information, we use the work surface’s physical dimensions to determine the objects’ real-world
coordinates.

Depth-based Estimation

We use the Realsense D435 RGB-D camera. To evaluate the depth-based estimation, we have a grid
of 3x3 dots on paper that are spaced evenly 50mm apart. The camera is positioned above the paper

Figure 7: Example of a 3x3 grid of dots spaced 50mm apart. The RGB image is on the top-left, with
the accompanying depth image on the bottom-left. The Real-world dot deprojection is on the right,
w.r.t. the camera center.
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at ∼320mm. We detect the dots using OpenCV and deproject them using the depth information. An
example of an image of dots and its deprojection is shown in Figure 7. We position the camera in 9
different poses on the paper.

The mean distance between dots is 49.9mm, with a standard deviation of 0.5mm. From this,
we determine that the depth is accurate to 0.5mm, at the approximate height of ∼320mm, when
considering the depth of a smooth surface.

Estimating the position of a device is more difficult than estimating the position of a dot on a paper
because the device can have a varying depth profile. Furthermore, the position of the device w.r.t. the
camera changes the error in the position. If the device is centered below the camera, the error in the
x, y position is 0mm. If the device is on the edge of the camera image, the error in the x, y position is
3mm. This error comes from the center of the segmentation mask not being the center of the object
because of the perspective of the object w.r.t. the camera. The object is viewed slightly from the side
instead of directly above, as is the case when the object is in the center of the image.

Work Surface-based Estimation

The Basler camera is mounted above the work surface. The work surface comprises a square metal
plate with bolt holes around the edge. We use the bolts to find the position of the work surface. The
camera is undistorted, and intrinsics are found via camera calibration.

The bolts are found using the Hough circle transform, with the parameters found using trial and
error. We know the locations of the bolts in real-world coordinates. We use a 2D affine point cloud
registration method [10], followed by a nearest neighbor search to match the found bolts with the
ground truth bolts. The point set registration method finds the affine transformation between two
unordered sets of points.

Given the matching, we compute an affine transform from pixel bolt positions to the real-world
bolt positions. This affine transform gives us the required coordinate transform.

We use the affine transform to transform the bolt positions from pixels to meters. The Euclidean
distance between the ground truth bolt positions and the affine transform has a mean error of 1.2mm
and a maximum error of 2.8mm.

The error of the position of a device depends on its position on the work surface. If the object is in
the middle of the work surface, such that it is in the middle of the camera image, the position is more
accurate than if the device is on the edge of the work surface and, therefore, on the edge of the image.

For a device in the center of the image, the error in the x, y position is 4mm. For a device on the
edge of the image, the error in the x, y position is 10mm. This error is larger than the error when the
device is in the center of the image, and this is the same as for the Realsense camera and comes from
the perspective not being centered below the camera.

KPI: The position of the objects should be accurate to ±5mm in the x and y direction. This KPI is
satisfied when the objects are viewed using the Realsense camera and the Basler camera under the
constraint that the device is near the center of the image.

3.2.5 System Speed

We run the vision pipeline on an Nvidia 1080Ti. The images from the Realsense camera are processed
in an average time of 200ms. The images from the Basler camera can be processed in an average time
of 250ms.
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Figure 8: Point set registration for bolt matching. The ‘source’ is the input bolts, scaled up. The
‘target’ is the ground truth bolt locations. The ‘result’ is the source bolts fitted onto the target bolts.

KPI satisfied: The system should be able to process an image in under 500ms when running on
modern computer hardware coupled with an Nvidia 1080Ti graphics card or better.

3.3 KPIs in WP3 for Tactile Robots and their Control

Preliminary KPIs introduced in the previous deliverable D5.3:

• Three main disassembly tactile skills were developed, covering the required operations for our
use cases: levering, unscrew-driving, and tactile exploration. Each includes four basic custom
operations: going to pose, establishing contact, applying force, and manipulating the work-
piece.

• Success rate for implementing tactile skills under various conditions: 100% due to the tactile
exploration skill.

• Force and displacement error from motion generator and unified force-impedance control: < 3
N, < 4mm discussed in detail later [8].

• Improvement of controller efficiency by adaption and learning parameters [5], [6], [13]

• Handling faults due to unforeseen external wrench: 100% [5], [6], [13].

• Stability of the controller: 100% [4].

However, the robot’s skill performance should be analyzed more broadly, and a comprehensive
benchmarking system that can handle various scenarios, including dynamically adapting to different
disassembly processes, is required. For example, in the context of disassembly, removing a battery
from an electronic device requires several coordinated actions: first, the robot must Go To Pose itself
accurately to align with the battery; second, it needs to Establish Contact with the battery carefully
to avoid damaging it; third, the robot must Manipulate Workpiece to lever the battery; and finally,
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it should Apply Force appropriately to detach the battery without causing harm. These operations
highlight the need for precision, adaptability, and control in disassembly, ensuring tasks are completed
efficiently and safely.

Thus, we developed experimental setups that specifically address the complexities of robotic dis-
assembly, ensuring that the KPIs and performance metrics are comprehensive and relevant to the
unique demands of this field. Additionally, we extended our approach to benchmark and standardize
all the relevant industrial tasks. This extended version has also been submitted as a publication and is
in review now [8].

3.3.1 Process-Based Tactile Performance Metrics

Twenty-five robot tactile performance metrics are derived for disassembly to determine the robot
control performance requiring physical interaction, namely, tactile performance metrics [9] [8]. In
summary, the five main groups of tactile performance metrics are as follows.

1. Force Sensing Metrics measure the system’s capability to sense forces accurately, precisely,
and consistently over time, using the maximum force deviations from a reference mass attached
to the robot end-effector. The definitions of measurement accuracy, resolution, precision, and
sensing drift after 1min, 10min, 1 h and 8 hrs are defined.

2. Force Control Metrics measure the quality of controlling end-effector interaction forces, which
is essential for manipulating objects and the environment. They quantify the accuracy of the ap-
plied forces compared to a desired force, the applied force precision, resolution, settling time,
overshoot forces, minimal force that the system can apply, and the stability under changing
environmental conditions such as materials and impact forces need to be considered.

3. Force Reaction Metrics measure the robot’s capability to detect and react to contacts. They
quantify force-sensitive detection of obstacles or contacts that can be desired or accidental
during motion. The two metrics describing this capability are contact sensitivity and tactile
contact sensitivity. They differentiate in the considered robot contact speeds and, thus, also in
the resulting contact force.

4. Human Safety Metrics measure the physical contact safety concerning the current state of
safety regulations [3], especially in constrained contact scenarios. While the initial contact
forces are primarily influenced by the robot’s dynamics and are affected by effective mass
and impact velocity, the quasi-static clamping forces remaining after first contact can be con-
trolled via appropriate collision handling. Current industrial standards provide references for
acceptable safety thresholds. Therefore, using a standardized test device, we measure the con-
formance to transient and quasi-static contact force thresholds according to [3], and the human
safety metrics are defined.

5. Teaching Metrics define, measure, and rate the quality and smoothness of the hand-guiding
functionality, i.e., manual maneuverability, of a robot. The minimum motion force, guiding
force, guiding force deviation, required guiding energy, and maneuver effort are defined.

For all metrics, a reproducible experimental standard protocol and an according experimental
setup were developed, respectively. These may serve future robot standards as templates. The twenty-
five metrics depicted in Fig.9 are crucial in defining the performance feature vector of robot tactility.
These metrics, including force profile error, load/force estimation error, and force tolerance, collec-
tively determine tactile performance.
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Figure 9: The robot motion and tactile performance metrics for industrial process, including disas-
sembly. This version was submitted as a publication and is in review now [8].
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3.4 KPIs in WP4 for Soft Grippers and Tools

The foreseen KPIs are:

• A. Pinch and power grasp: standard dynamo meters can be used to measure the force of the
hand’s grasp. This value is deemed the main performance indicator for a gripper. Pinch Grasp:
[1 N –5N], Power Grasp: [1N – 50N].

• B. Capability of the hand to hold objects with different shapes and orientations. Pinch Grasp:
[> 0,2 kg], Power Grasp: [> 2 kg], Hanging: [> 5 kg].

• C. Opening and closing time: Since the opening and closing commands are executed many
times in a given task, their running time strongly impacts the whole duration of the dismounting
process. Closing time: [1,5 sec].

• D. Possibility to reconfigure the gripper. End-effector reconfiguration time: [< 20 sec].

• E. Quickly engage and disconnect wrist would also contribute to speeding up the disassembly
task – End-effector exchange time: [< 60 sec].

• F. Electromagnetic compatibility for the final robotic end-effector integrated into the cell mea-
sured according to EN ISO 6100-6-2 / 6-4.

• G. Estimated price of end-effector for the final robotic cell. Two fingers: [< 3 kC], Five fingers:
[< 10kC].

• H. Successful grasp repeatability for different orientations of objects relevant to the ReconCycle
Project. Parallelepiped shape: > 90%, disk shape: > 90%, cylindrical shape: > 90%.

3.4.1 KPI Evaluations

These tests have been carried out in qblab by certified force cells and customized tools to fit the
grippers’ shape. For force estimation, qbrobotics designed a handle with two force cells for hands
and a custom pad for the gripper. Grippers grasped four samples from 2 to 45mm thick, 50 times
each. The force values have been obtained by the GUI provided by the sensor supplier, and the
reported KPI is the average value. The test consists of grasping samples of sphere shape (cylindrical
shape for hanging approach) from 2 to 45mm diameter and a known load connected by a wire. A
positive result consists of firmly keeping the load for 10 seconds.

To estimate the closing time, we measured the interval from sending the closing reference to
achieving the closing condition, where the motor speed and acceleration reached zero (static con-
dition). The reconfiguration of SoftHand 2 can be considered continuous due to its dexterity. In
contrast, for the VS gripper, the substitution time of both fingers was tested.

There were two Franka Emika robots in the workcell. The main phases involving end-effectors in
the disassembly sequence are:

• grasping the device and positioning in the clamp;

• levering to remove the inner structure IN (device without external frame);

• tool changing for picking and positioning of IN in the cutter;
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Table 3: Data collection process for grasping tests with soft end-effectors

• grasping of critical component B (battery);

• grasping of external frame;

Our tests focused on the grasping of HCA and subcomponents (phases 1, 3, 4, and 5) with three
devices: qb SoftHand Research, Research 2, and the VS gripper. Two heat cost allocator Type A
models were used; they have similar battery locations, dimensions, and structures. Table 3 shows the
main dimensions and direction of the reference system of devices and subcomponents.

A pick-and-place open loop has been implemented in ROS. Each component is grasped fifty times
to evaluate the repeatability of grasping. The end-effector approach direction is parallel to the normal
n of the work-plane surface. We did not use a vision system, so the object’s center was always placed
in the same position but with random orientation to simulate the variability of its positioning in the
work cell. As shown in Table 3, tests were scheduled by positioning the objects as follows: i) z
direction parallel to normal n and ii) x direction parallel to normal n. For the robotic hands, the
wrist orientation allows one to grasp the object mainly by exploiting the opposition of the thumb with
the forefinger. The object’s x direction is approximately normal to the finger-pad surface for the VS
gripper and parallel to the thumb-index closure direction for the hands. All tests were performed
using ROS, running cyclically in the desired sequence. Particular attention was paid to the grasp of
battery “B” due to its dimensions and warning. All test results have been collected in an Excel file to
calculate the grasping repeatability.

The results for qb SoftHand Research, the qb SoftHand 2 Research, and the Variable Stiffness
Gripper are shown in Tab. 4. Tests on disk shape samples have not been carried out because they are
not attributable to the components of HCAs, and the smoke alarms are too big to be grasped from the
circular surface.

For each KPI, the following scores were applied: Score (A - B): 1 for value = 0.1*target and 5 for
value = target; Score (C - G): 1 for value = target and 5 for value = 0.1*target. We computed a median
value for each device to evaluate performance.

From a technical point of view, the SH2R has a better performance than SHR, particularly for
KPI “H”, which is not fully satisfied by SHR. Moreover, the SH2R can continuously reconfigure the
kinematic movements of fingers to achieve an excellent grasp versatility.

KPIs about costs for the new end-effectors SH2R and VSG were also evaluated. Considering the
cost composition (CNC machining, injection, electronics, design, royalties, etc.) and discounts based
on quantities, we can estimate the cost variation in these cases:
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Table 4: KPIs evaluation for qb SoftHand Research (SHR), its evolution (SH2R), and the Variable
Stiffness Gripper equipped with a levering tool (VSG lev). NA indicates “Not Applicable”.

• SH2R – actual technology;

• SH2R inj – switching the FDM technology in injection molding;

• VSG – actual technology;

• VSG inj – switching the CNC technology for aluminum parts in injection molding

For this analysis, the considered quantity slots were 1 - 9; 10 - 49; 50 - 149; 150+, as depicted
in Fig. 10. The cost of injection molds is equally divided into the first ten pieces for the first slot, 50
pieces for the second, and fully amortized for higher quantities.

Fixed costs, particularly for Intellectual Proprieties (SH2R), hardware and software design drasti-
cally decrease for the second bracket, satisfying the KPI target. Moreover, for more than 50 pieces, the
injection molding investment allows a further reduction of costs. The cost analysis shown in Fig. 11
gave important information for the exploitation and business analysis of the innovation developed in
the project.
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Figure 10: Cost variation depending on quantity

Figure 11: KPI (G) evaluation of two manufacturing options for each device
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3.5 KPIs in WP5 for System Operation

The target KPIs for WP5 are:

• Throughput time: at least 100 pieces per hour.

• Start-up time (boot time): less than 1 minute.

• Set-up of a known work cell at a new location: 90 minutes.

• Set-up of a new work cell for new devices (includes hardware design and manual program-
ming): no more than two weeks.

3.5.1 Throughput time

To achieve the desired throughput of at least 100 pieces per hour in the recycling line, the cycle time
should be below 36 seconds. However, the current disassembly cycle time for the devices in question,
ranging from 70 to 110 seconds (see Sec. 3.1.3), falls short of the desired throughput KPI.

The implemented disassembly cycle was designed with a focus on accommodating different types
of devices, rather than optimizing for large batches of similar devices with only minor variations due
to damage (different conditions of devices after their end of life). In an industrial setting, where the
process is expected to handle larger quantities of the same device type over a certain period, the KPI
could be achieved by further optimizing the cycle time, tailoring it to the specific device example
while allowing for only limited adaptation.

3.5.2 Start-up time

To start up the workcell and prepare it for use, the embedded computers as well as the external
workstations and controllers must be booted. The computers are set to automatically boot when
power supply is resumed. Booting can be done in parallel:

• Workstation: cca 50 sec including docker initialization.

• Embedded computers in the modules: cca. 45 sec including docker initialization.

The target startup time of less than 1 minute is thus met.

3.5.3 Set-up of a known work cell on a new location

Owing to the modular design of the software and hardware, setting up a known workcell at a new
location is greatly simplified and requires only that the modules are connected to each other and
integrated in the same network.

It is assumed that the modules are prepared in advance, i.e. fully assembled (the robot or pe-
ripherals are already mounted on the module). A special plug-and-play (PnP) connector module is
used to connect compressed air, network, and power. The plugging procedure, along with locking the
modules in place, takes about 1 minute per module. As discussed in the previous section, the modules
automatically boot within 1 minute when power is applied.

After booting, various settings may need to be reconfigured, such as adjusting internet preferences
to access resources outside the internal workcell network. These procedures typically take no longer
than 10 minutes.

This means that the target value of the KPI (90 minutes) is met comfortably.
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3.5.4 Set-up of a new work cell for new devices

This KPI depends on the workcell size, the complexity of the disassembly procedure and number of
novel functionalities that have to be implemented. We assume that the set-up team includes at least
one mechanical engineer, one software engineer, and one tutor for process operators.

Provided that all major hardware components are available, only smaller hardware components
such as gripper fingers and fixtured need to be designed. Using rapid prototyping and 3-D printing or
machining (milling), simple hardware elements can typically be designed and produced within two
working days.

Another time-consuming part is the installation of the internal modules into archetypical modules
with empty drawers for peripheral support. This includes setting up embedded computers, connecting
GPIO pins to the solenoid valves to operate pneumatic devices, connecting air lines to peripherals,
electrical wiring, installing network switches and network cables, and cable management. Deploy-
ment of the base software components to the modules with new peripheral equipment is facilitated by
using docker containers. Most peripheral devices can be integrated by adjusting configuration files of
ROS nodes. This process takes no longer than one working day per module.

To support new operations, skill templates and a library of convenience functions for operating
peripheral devices and robots can be used as a boilerplate for programming new functionality that
seamlessly integrates into the existing software architecture. Three working days should be allocated
for the development, testing, and integration of each new functionality.

A medium-sized workcell with up to 6 modules and two new hardware components and two novel
functionalities can be set up within a period of eleven days, exceeding the target KPI of two weeks.
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